数理逻辑 Review

01 形式系统

形式系统的定义

形式系统用五元偶表示
F S = &lt; ∑ , T e r m , F o r m u l a , A x i o n , R u l e &gt; FS = &lt;\sum ,Term,Formula,Axion,Rule&gt; FS=<,Term,Formula,Axion,Rule>
其中:
∑ \sum 是字符表
Atom 是原子公式, Atom ⊆ \subseteq Formula
Axion 是公理 , Axion ⊆ \subseteq Formula

语法: 构成形系统语言成分的规则(语言成分包含 项和公式)
语义:给语言成分赋予特定值的过程。
将项和公式映射到任意结合,该集合的语义值集合.
公式的语义由一个函数确定:
σ : { a , b } → z \sigma: \left\{a,b\right\} \rightarrow z σ:{a,b}z

形式系统的推理

A由T可证,等价于 存在证明序列 A 0 . . . . A n ∈ F o r m u l a A_0....A_n \in Formula A0....AnFormula

  • T ⊆ F o r m u l a ( 公 设 集 ) T \subseteq Formula(公设集) TFormula()

  • T h ( F S U T ) = T h ( T ) = { A ∈ F o r m u l a ∣ T ⊢ A } Th(FSUT) = Th(T) = \left\{A \in Formula | T \vdash A \right\} Th(FSUT)=Th(T)={AFormulaTA}
    Th(T) 表示T能证明出来的公式的集合

  • A x i o m ⊆ T h ( T S ) ⊆ T h ( T ) Axiom \subseteq Th(TS) \subseteq Th(T) AxiomTh(TS)Th(T)
    公理是形式系统在没有任何前提的情况下可以证明出来的,自然在有前提T的情况下,也能证明出来。

  • T ⊆ T h ( T ) T \subseteq Th(T) TTh(T)

  • T h ( ∅ ) = T h ( F S ) Th(\varnothing ) = Th(FS) Th()=Th(FS)

  • T 1 ⊆ T 2 则 T h ( T 1 ) ⊆ T h ( T 2 ) T_1 \subseteq T_2 则 Th(T_1) \subseteq Th(T_2) T1T2Th(T1)Th(T2)

  • T h ( T h ( T ) ) = T h ( T ) Th(Th(T)) = Th(T) Th(Th(T))=Th(T)

形式系统的扩张

F S 1 ⊆ F S 2 FS_1 \subseteq FS_2 FS1FS2
五元组分别存在 ⊆ \subseteq 关系

总结

  1. 推理 实际上公式形式的匹配,与语义无关
  2. 语义独立与形式系统 (证明独立性时变换语义)
  3. 公式结构归纳法,用以证明性质
  4. 定义语法时要检查是否哟歧义

02 命题逻辑

P系统的定义

p是形式系统的一般具体表现
符号: ∑ \sum ,~,v,(,) -
Term: ∅ \varnothing
Formula:

  1. 若P是命题变元(没有命题常元),则 p ∈ ϱ p \in \varrho pϱ
  2. A ∈ ϱ A \in \varrho Aϱ,则~ A ∈ ϱ A \in \varrho Aϱ
  3. A , B ∈ ϱ , 则 ( A ∨ B ) ∈ ϱ A,B \in \varrho, 则(A \vee B)\in \varrho A,Bϱ,ABϱ

Atom: 由全部原子命题构成的集合

公式结构归纳法

  1. P是命题变元,则P满足性质R
  2. 若A满足性质R,则~A满足性质R
  3. 若B,C分别满足性质R,则 B ∨ C B \vee C BC满足性质R

派生记号

在这里插入图片描述

P系统的推理

  • A x i o m = A S 1 ∪ A S 2 U A S 3 Axiom = AS_1 \cup AS_2 UAS_3 Axiom=AS1AS2UAS3
  • A S 1 = A ∨ A ⊃ A AS_1 = A \vee A \supset A AS1=AAA
  • A S 2 = A ⊃ B ∨ A AS_2 = A \supset B \vee A AS2=ABA
  • A S 3 = A ⊃ B ⊃ ( C ∨ A ⊃ B ∨ C ) AS_3 = A \supset B \supset (C \vee A \supset B\vee C) AS3=AB(CABC)
  • R u l e : M P = A , A ⊃ B B Rule: MP = \frac{A,A\supset B}{B} Rule:MP=BA,AB
  • MP规则也成为分离规则,假言推理

代入操作

在这里插入图片描述

P的定理和派生规则

在这里插入图片描述

P的语义和连接词

在这里插入图片描述

真假指派(赋值)

在这里插入图片描述
ϱ \varrho ϱ上的一个指派 φ \varphi φ 是从Atom到{t,f}的函数。
V φ ( P ) V_{\varphi}(P) VφP来表示对P的指派结果。
则:
在这里插入图片描述
每个指派都满足A,则A为永真式(重言式)
每个指派都不满足A,则A为永假式(矛盾式)

若每个满足T的指派都满足A,则称A为T的逻辑结果
若有指派满足T,则称T是可满足的,否则T为不可满足的

命题连接词

在这里插入图片描述

连接词结合的合成闭包*

在这里插入图片描述

公式的指定出现与替换

在这里插入图片描述

P的元性质

在这里插入图片描述

可靠性定理

协调性

子集性质

协调性原理

公式集的完全性

保协扩张

完全性定理

紧致性定理

析取有效

公理/规则的独立性

消解算法

在这里插入图片描述
消解算法主要用于判断公式的可满足性。

相关定义

  1. 命题变元称为文字,用L表示
  2. 文字的析取式称为短句,用C表示
  3. 短句的合取称为合取范式
  4. ~P和P称为一对互补文字
  5. 另个文字的析取成为空短句(空短句是不可满足的)
  6. 短句和合取范式都可以用集合表示

消解式

在这里插入图片描述

消解定理

在这里插入图片描述
T导出空短句的消解序列称为T的反驳 或者否证
T如果能消解出C,则T能证出C
若T不可满足,则T一定能消解除空短句。
消解前后可满足性不变

DPLL-消解方法

在这里插入图片描述

03 一阶逻辑

F系统的定义

符号

在这里插入图片描述

Term项

在这里插入图片描述

Axiom

在这里插入图片描述

Formula

在这里插入图片描述

派生记号

在这里插入图片描述

个体变元的自由/约束出现

在这里插入图片描述
若A中无自由的个体变元,则A为闭公式 (每一个出现的个体变元都是有约束的)
若A中除约束变元外,无其他变元,则称A为句子

个体变元代入操作

在这里插入图片描述

命题变元代入操作

在这里插入图片描述

可代入(自由)

在这里插入图片描述

F系统的推理

在这里插入图片描述

F系统的定理与导出规则

在这里插入图片描述

P永真和P规则

在这里插入图片描述

无前提依赖证明的协调性

在这里插入图片描述
在这里插入图片描述
α β 条 件 换 名 规 则 \alpha\beta条件换名规则 αβ
在这里插入图片描述

前提依赖证明的定义

在这里插入图片描述

04 等词

05 证明与反驳

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_Summer tree

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值