一步步解析SVO代码(二)---初始化

本文是SVO算法系列的第二篇,详细介绍了SVO的初始化过程,包括程序入口、主函数和BenchmarkNode类。在主函数中,相机初始化和SVO设置完成。接着讲解了第一帧的处理,第一帧被设定为关键帧,并进行兴趣点检测。第二帧通过光流跟踪进行特征匹配,位姿恢复则依赖于vikit包,进行单应矩阵计算和解筛选。文章还提到了局部BA操作和关键帧插入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SVO系列第二篇,正式开始介绍SVO代码

程序入口

test_pipeline.cpp

主函数

主函数BenchmarkNode的函数。

	svo::BenchmarkNode benchmark;
	benchmark.runFromFolder();

BenchmarkNode 类

BenchmarkNode 定义了什么?
class BenchmarkNode 中定义了2个类,3个函数。2个类分别是

vk::AbstractCamera* cam_;
svo::FrameHandlerMono* vo_;
  1. vk表示vikit包,是svo编译依赖的一个包,同样出自uzh-rpg,所以svo编译需要下载vikit. vikit的作用:vikit contains camera models, some math and interpolation functions that SVO needs. 所以AbstractCamera这里是一个相机类,类的定义可以查看vikit/abstract_camera.h
  2. FrameHandleMono表示处理帧的类,定义了SVO算法的主体函数,后面会详述。

3个函数分别是:
构造函数,析构函数,读图程序

BenchmarkNode();
~BenchmarkNode();
void runFromFolder();

BenchmarkNode 实现了什么?
构造函数完成了相机初始化定义,svo初始化。

BenchmarkNode::BenchmarkNode()
{
  cam_ = new vk::PinholeCamera(752, 480, 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值