Switch Transformer模型解读-Introduction

文章介绍了Switch Transformer模型,这是一种追求更高计算效率的稀疏激活专家模型。与T5模型对比,Switch Transformer在相同计算成本下表现更优,特别是在大规模参数设置下,其负对数困惑度更高,表明预测准确性增强。此外,该模型能被有效蒸馏为小而密集的模型,同时提升了预训练和微调的技术。Switch Transformer的编码器模块采用稀疏Switch FFN替代传统FFN,通过路由门值选择激活的专家,实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Switch Transformer: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

下载地址:

https://arxiv.org/pdf/2101.03961.pdf

github 代码:https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/moe.py

公众号:AliceWanderAI

 

Introduction

 

作者在Introduction 中提出:

为了寻求更高的计算效率,我们提出了一种稀疏激活的专家模型:Switch Transformer。在我们的案例中,稀疏性来自为每个输入样本仅激活神经网络权重的子集

For seeking greater computational efficiency, we propose a sparsely-activated expert model: the Switch Transformer. In our case the sparsity comes from activating a subset of the neural network weights for each incoming example.

图片

上面左图显示的是:sparse model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值