【AI】MCP概念

一文讲透 MCP(附 Apifox MCP Server 内测邀请)

7分钟讲清楚MCP是什么?统一Function calling规范,工作量锐减至1/6,人人手搓Manus!? | 一键链接千台服务器,几行代码接入海量外部工具_哔哩哔哩_bilibili

MCP(Model Context Protocol,模型上下文协议)是由Anthropic公司提出的开放协议,旨在标准化大语言模型(LLM)与外部数据源、工具之间的交互方式,解决传统AI模型在实时性、工具集成等方面的瓶颈。以下是其核心要点:


一、定义与核心功能

  1. 角色定位
    MCP被类比为AI领域的“USB-C接口”,通过统一协议连接LLM与外部系统(如数据库、API、本地文件),实现动态信息处理。它允许AI模型直接访问实时数据(如天气、股票)、企业数据库(如Notion、Slack),甚至控制专业软件(如Blender、QGIS)。
  2. 技术架构
    MCP主机:用户与AI交互的应用程序(如Claude Desktop)。
    MCP服务端:提供特定功能的轻量级程序(如文件管理、天气查询),通过标准化协议暴露接口。
    MCP客户端:协调主机与服务端通信的中间层,支持双向数据流。

二、解决的问题

  1. 数据时效性
    传统LLM依赖静态训练数据,无法获取实时信息(如最新新闻、用户个人文件),而MCP通过动态接入外部数据源弥补这一缺陷。
  2. 工具链碎片化
    现有AI工具(如Function Call)需开发者单独适配接口,MCP标准化交互流程,降低集成复杂度。
  3. 安全与权限控制
    MCP服务端内置权限管理机制,用户需明确授权敏感操作(如文件写入),避免API滥用风险。

三、与现有技术的区别

对比维度Function CallMCP
功能范围调用预定义API(如计算器)接入开放生态(数据库、专业软件等)
开发复杂度需手动定义接口逻辑标准化协议,复用现有服务端
交互模式单向调用支持双向通信(如实时数据更新)
适用场景简单任务(如天气查询)复杂工作流(如自动化建模、数据分析)

四、应用场景

  1. 个人效率工具
    文件管理:AI自动整理下载文件夹并按规则归档。
    邮件处理:总结未读邮件并生成待办清单。
  2. 专业软件集成
    3D建模:通过Blender MCP,Claude可基于文本提示生成复杂3D场景,大幅缩短人工操作时间。
    地理分析:结合QGIS实现自动化地图绘制与数据处理。
  3. 企业应用
    数据库操作:直接查询Notion数据库并生成报告。
    跨平台协作:集成Slack、GitHub等工具实现任务自动化。

五、未来发展

  1. 生态扩展
    MCP商店(如mcp.so)已提供2600+插件,涵盖时间管理、爬虫等场景,开发者可快速复用或自建服务端。
  2. 技术趋势
    结合小芯片(Chiplet)和异构集成技术,MCP可能进一步优化硬件级协作能力,但当前重点仍是降低使用门槛,推动AI助手平民化。

如需实践,可参考GitHub开源项目(如Blender MCP)或通过Claude Desktop体验操作Notion的案例。

04-12
### 关于AI MCP的相关内容 #### AI MCP认证 智子学院推出的“MCP导师认证计划”要求参与者在一个月内完成Azure AI Fundamentals (AI-900) 的认证考试[^1]。该认证旨在验证个人对于人工智能基础概念的理解以及其在Microsoft Azure平台上的应用能力。通过此认证后,持证者将以微软认证专家的身份为企业提供技术咨询服务。 #### AI MCP课程 针对希望深入了解并掌握Model Context Protocol(简称MCP)的技术人员,存在一系列详尽的学习资源可供利用。这些资源不仅涵盖了理论知识讲解还包含了实践操作指导,例如如何构建适合初学者使用的AI开发环境资料包、学习计划表以及其他辅助材料均已被整理成套,并可通过特定渠道获取[^3]。值得注意的是,这类课程特别强调了从零基础起步的设计理念,力求使每位学员都能够轻松入门复杂的人工智能领域。 #### AI MCP平台支持 MCP作为由Anthropic提出的开放式协议框架,在促进不同LLMs间高效协作方面发挥着重要作用[^2]。具体而言,它定义了一种通用的语言用于描述模型请求及其响应格式,从而简化了开发者将自定义功能集成至现有系统的流程。借助这一机制,无论是小型初创团队还是大型企业都能更便捷地实现跨平台部署需求。 ```python # 示例代码展示了一个简单的HTTP风格API调用模拟过程 import requests def call_mcp_endpoint(url, payload): headers = {'Content-Type': 'application/json'} response = requests.post(url, json=payload, headers=headers) return response.json() example_payload = {"action": "generate_text", "input": "Tell me about cats"} result = call_mcp_endpoint("https://api.example.com/mcp/v1", example_payload) print(result) ``` 上述脚本片段演示了向假设的支持MCP接口发送POST请求的方式方法之一;其中涉及到了JSON序列化处理及标准库`requests`模块的应用实例。 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酱学编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值