TensorFlow 基础练习 4 activation 激活函数

1、激活函数 activation

对于神经网络算法来说,激活函数是必不可少的一部分,下面将绘制TensorFlow中常用的几个激活函数。

 

"""
author:NLP_xiaoyu
https://blog.csdn.net/Nr0315
Dependencies:
tensorflow: 1.10.0
matplotlib
"""

# 绘制不同的激活函数
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt


# 创建数据
x_data = np.linspace(-10, 10, 100)   # 创建 x_data ,shape=(100,1)


# activation function 激活函数
y_relu = tf.nn.relu(x_data)
y_sigmoid = tf.nn.sigmoid(x_data)
y_tanh = tf.nn.tanh(x_data)
y_softplus = tf.nn.softplus(x_data)
y_softmax = tf.nn.softmax(x_data)   # softmax 激活函数输出是概率,一般用于分类时输出类别的概率

sess = tf.Session()
y_relu, y_sigmoid, y_tanh, y_softplus = sess.run([y_relu, y_sigmoid, y_tanh, y_softplus])
y_softmax = sess.run(y_softmax)
print(y_softmax)
# 画图
plt.figure(1, figsize=(8, 6))
plt.subplot(221)
plt.plot(x_data, y_relu, c='red', label='relu')
plt.legend(loc='best')

plt.subplot(222)
plt.plot(x_data, y_tanh, c='red', label='tanh')
plt.legend(loc='best')

plt.subplot(223)
plt.plot(x_data, y_sigmoid, c='red', label='sigmoid')
plt.legend(loc='best')

plt.subplot(224)
plt.plot(x_data, y_softplus, c='red', label='softplus')
plt.legend(loc='best')

plt.show()

 

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值