简单Lagrange中值定理例题

题目

lim ⁡ x → + ∞ x 2 ( a 1 x − a 1 x + 1 ) ( a > 0 ) \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {{a^{{1 \over x}}} - {a^{{1 \over {x + 1}}}}} \right)\left( {a > 0} \right) x+limx2(ax1ax+11)(a>0)

来源

群友提问

证明

lim ⁡ x → + ∞ x 2 ( a 1 x − a 1 x + 1 ) = lim ⁡ x → + ∞ x 2 ( 1 x − 1 x + 1 ) ⋅ a ξ ln ⁡ a \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {{a^{{1 \over x}}} - {a^{{1 \over {x + 1}}}}} \right) = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {{1 \over x} - {1 \over {x + 1}}} \right) \cdot {a^\xi }\ln a x+limx2(ax1ax+11)=x+limx2(x1x+11)aξlna
其中 f ( x ) = a x , f ′ ( x ) = a x ln ⁡ a , ξ f(x)=a^x,f'(x)=a^x\ln a,\xi f(x)=ax,f(x)=axlna,ξ介于 1 x {1 \over x} x1 1 x + 1 {1 \over {x + 1}} x+11之间,根据夹逼定理可知原极限 = ln ⁡ a . =\ln a. =lna.

夹逼定理详细步骤

我们不妨令 a > 1 a>1 a>1,则
lim ⁡ x → + ∞ x 2 ( a 1 x − a 1 x + 1 ) = lim ⁡ x → + ∞ x 2 ( 1 x − 1 x + 1 ) ⋅ a ξ ln ⁡ a = lim ⁡ x → + ∞ x 2 1 x ( x + 1 ) ⋅ a ξ ln ⁡ a = ln ⁡ a lim ⁡ x → + ∞ a ξ \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {{a^{{1 \over x}}} - {a^{{1 \over {x + 1}}}}} \right) = \mathop {\lim }\limits_{x \to + \infty } {x^2}\left( {{1 \over x} - {1 \over {x + 1}}} \right) \cdot {a^\xi }\ln a = \mathop {\lim }\limits_{x \to + \infty } {x^2}{1 \over {x\left( {x + 1} \right)}} \cdot {a^\xi }\ln a = \ln a\mathop {\lim }\limits_{x \to + \infty } {a^\xi } x+limx2(ax1ax+11)=x+limx2(x1x+11)aξlna=x+limx2x(x+1)1aξlna=lnax+limaξ
由于 a x a^x ax是单调递增的,因此 a 1 x + 1 < a ξ < a 1 x , {a^{{1 \over {x + 1}}}} < {a^\xi } < {a^{{1 \over x}}}, ax+11<aξ<ax1 x → + ∞ x \to + \infty x+,所以 a 1 x + 1 → 1 , a 1 x → 1 , {a^{{1 \over {x + 1}}}} \to 1,{a^{{1 \over x}}} \to 1, ax+111,ax11因此根据夹逼定理可知
a ξ → 1. {a^\xi } \to 1. aξ1.
0 < a < 1 0<a<1 0<a<1,读者也可以得到一样的结论,综上所述, a ξ → 1. {a^\xi } \to 1. aξ1.

其中第一个等号使用了Lagrange中值定理.

练习

lim ⁡ x → + ∞ cos ⁡ x − cos ⁡ x + 1 \mathop {\lim }\limits_{x \to + \infty } \cos \sqrt x - \cos \sqrt {x + 1} x+limcosx cosx+1

答案: 0. 0. 0.

在以后应用Lagrange中值定理时,我们将不再呈现具体的步骤,因为这是基本计算能力。

  • 15
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Oliver_xiaofengfeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值