1.MobileNetV2的介绍
MobileNet v2网络是由google团队在2018年提出的,相比MobileNet V1网络,准确率更高,模型更小。
网络中的亮点 :
1)Inverted Residuals (倒残差结构 )
2)Linear Bottlenecks(结构的最后一层采用线性激活函数)
2.MobileNetV2的结构
1)Inverted Residuals
在之前的ResNet残差结构是先用1x1的卷积降维,再升维的操作。而在MobileNetV2中,是先升维,在降维的操作。
所以对于ResNet残差结构是两头大,中间小。而对于MobileNetV2结构是中间大,两头小的结构。
其中,在MobileNet结构中,采用了新的激活函数:ReLU6
2)Linear Bottlenecks
针对倒残差结构中,最后一层的卷积层,采用了线性的激活函数,而不是ReLU激活函数。
可以看到,在上图中的第二三幅图中,图片经过与二、三维的矩阵相乘后,再通过逆矩阵还原时会产生较大的损失,而矩阵维度越高还原后的损失越小,所以ReLU激活函数对于低维的信息可能会造成比较大的瞬损失,而对于高维的特征信息造成的损失很小。
而且由于倒残差结构是两头小中间大,所以输出的是一个低维的特征信息。所以使用一个线性的激活函数避免特征损失。
结构如下所示:
ps:当stride=1且 输入特征矩阵与输出特征矩阵shape 相同时才有shortcut连接
shape的变化:其中的k是扩充因子
也就是先将输入图片的通道进行扩充升维k倍,再进行DW卷积,这两步都是使用ReLU6作为激活函数,最后再进行降维操作,输出通道为K`,其中激活函数为线性函数。
3.MobileNetV2的性能统计
Classification分类任务
其中MobileNetV2(1.4)中的1.4代表的是倍率因子也就是α,其中α是控制卷积层卷积核个数的超参数,β是控制输入图像的大小。MobileNetV2(1.4)也就是说将卷积核个数(通道数)增加为1.4倍的结果。
可以看见,在CPU上分类一张图片主需要花75ms,基本上达到了实时性的要求。
Object Detection目标检测任务
可以看见,MobileNetV2的提出,已经基本上可以实现在移动设备或者是嵌入式设备来跑深度学习的模型了。将研究与日常生活结合了起来。
4.MobileNetV2的pytorch实现
MobileNetV2的网络结构
t是扩展因子,第一层1x1卷积层中卷积核的扩展倍率
c是输出特征矩阵深度channel
n是bottleneck的重复次数
s是步距( 针对第一层,其他为1 ,与ResNet的类似,通过第一层的步长改变尺寸变化)
参考代码
from torch import nn
import torch
def _make_divisible(ch, divisor=8, min_ch=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_ch is None:
min_ch = divisor
new_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_ch < 0.9 * ch:
new_ch += divisor
return new_ch
class ConvBNReLU(nn.Sequential):
def __init__(self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_channel),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, in_channel, out_channel, stride, expand_ratio):
super(InvertedResidual, self).__init__()
hidden_channel = in_channel * expand_ratio
self.use_shortcut = stride == 1 and in_channel == out_channel
layers = []
if expand_ratio != 1:
# 1x1 pointwise conv
layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=1))
layers.extend([
# 3x3 depthwise conv
ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),
# 1x1 pointwise conv(linear)
nn.Conv2d(hidden_channel, out_channel, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channel),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_shortcut:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, num_classes=1000, alpha=1.0, round_nearest=8):
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = _make_divisible(32 * alpha, round_nearest)
last_channel = _make_divisible(1280 * alpha, round_nearest)
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
features = []
# conv1 layer
features.append(ConvBNReLU(3, input_channel, stride=2))
# building inverted residual residual blockes
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * alpha, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, last_channel, 1))
# combine feature layers
self.features = nn.Sequential(*features)
# building classifier
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(last_channel, num_classes)
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x