DenseNet 经典网络学习笔记 (附代码)

论文地址:https://arxiv.org/pdf/1608.06993.pdf

代码地址:https://github.com/tt-s-t/Deep-Learning

1.是什么?

      DenseNet斩获CVPR 2017的最佳论文奖。 模型的基本思路与ResNet一致,但它建立的是前面所有层与后面层的密集连接(即相加变连结),它的名称也是由此而来。

      DenseNet的另一大特色是通过特征在通道上的连接来实现特征重用。这些特点让DenseNet的参数量和计算成本都变得更少了(相对ResNet),效果也更好了。

      ResNet解决了深层网络梯度消失问题,它是从深度方向研究的。宽度方向是GoogleNet的Inception。而DenseNet是从feature入手,通过对feature的极致利用能达到更好的效果和减少参数。

2.为什么?

DenseNet以前馈的方式(feed-forward fashion)将每个层与其它层连接起来。在传统卷积神经网络中,对于L层的网络具有L个连接,而在DenseNet中,会有L(L+1)/2个连接。每一层的输入来自前面所有层的输出。

DenseNet网络:

(1).减轻梯度消失(vanishing-gradient)。

(2).加强feature传递。

(3).鼓励特征重用(encourage feature reuse)。

(4).较少的参数数量。

3.怎么样?

3.1网络结构图

上图表示有三个密集区块的深层密集网。两个相邻区块之间的层被称为过渡层,通过卷积和池化的特征图大小。 

具体参数: 

 

 DenseBlock中采用BN+ReLU+Conv的结构,平常我们常见的是Conv+BN+ReLU。这么做的原因是:卷积层的输入包含了它前面所有层的输出特征,它们来自不同层的输出,因此数值分布差异比较大,所以它们在输入到下一个卷积层时,必须先经过BN层将其数值进行标准化,然后再进行卷积操作。

       通常为了减少参数,一般还会先加一个1x1conv来减少参数量。所以DenseBlock中的每一层采用BN+ReLU+1x1 Conv+BN+ReLU+3x3 Conv的结构(或者BottleNeck)。

3.2 Dense Block——特征重用

上图是一个包含5层layer的Dense Block。可以看出Dense Block互相连接所有的层,具体来说就是每一层的输入都来自于它前面所有层的特征图,每一层的输出均会直接连接到它后面所有层的输入。所以对于一个L层的DenseBlock,共包含 L*(L+1)/2 个连接(等差数列求和公式),如果是ResNet的话则为(L-1)*2+1。从这里可以看出:相比ResNet,Dense Block采用密集连接。而且Dense Block是直接concat来自不同层的特征图,这可以实现特征重用(即对不同“级别”的特征——不同表征进行总体性地再探索),提升效率,这一特点是DenseNet与ResNet最主要的区别。

3.3  Transition层

它主要用于连接两个相邻的DenseBlock,整合上一个DenseBlock获得的特征,缩小上一个DenseBlock的宽高,达到下采样效果,特征图的宽高减半。Transition层包括一个1x1卷积(用于调整通道数)和2x2AvgPooling(用于降低特征图大小),结构为BN+ReLU+1x1 Conv+2x2 AvgPooling。因此,Transition层可以起到压缩模型的作用 。

      超参调节:θ是压缩系数,取值(0,1],当θ=1时,原feature维度不变,即无压缩;

而当压缩系数小于1时,这种结构称为DenseNet-C(文中使用θ=0.5);

对于使用bottleneck层的DenseBlock结构和压缩系数小于1的Transition组合结构称为DenseNet-BC。后面在使用的DenseNet默认都是DenseNet-BC,因为它的效果最好。
 

3.4代码实现

(1)conv

 这里是BN+ReLU+1x1 Conv+BN+ReLU+3x3 Conv结构,最后也加入dropout层以用于训练过程。

class _DenseLayer(nn.Sequential):
    """Basic unit of DenseBlock (using bottleneck layer) """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        self.add_module("relu1", nn.ReLU(inplace=True))
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,
                                           kernel_size=1, stride=1, bias=False))
        self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False))
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
        #通过torch.cat操作将前面的数据合并在一起 
        #类似如:第一次操作:[x, features] 
        #      第二次操作:[x, features_1] 其中,此时的x为[x, features] 
        return torch.cat([x, new_features], 1)
(2)DenseLayer
import torch
import torch.nn as nn
import torch.nn.functional as F
 
class DenseLayer(nn.Sequential):
    """Basic unit of DenseBlock (using bottleneck layer) """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(DenseLayer, self).__init__()
        self.bn1 = nn.BatchNorm2d(num_input_features)
        self.relu1 = nn.ReLU()
        self.conv1 = nn.Conv2d(num_input_features, bn_size*growth_rate,
                                           kernel_size=1, stride=1, bias=False)
        self.bn2 = nn.BatchNorm2d(bn_size*growth_rate)
        self.relu2 = nn.ReLU()
        self.conv2 = nn.Conv2d(bn_size*growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False)
        self.drop_rate = drop_rate
 
    def forward(self, x):
        output = self.bn1(x)
        output = self.relu1(output)
        output = self.conv1(output)
 
        output = self.bn2(output)
        output = self.relu2(output)
        output = self.conv2(output)
 
        if self.drop_rate > 0:
            output = F.dropout(output, p=self.drop_rate)
        return torch.cat([x, output], 1)
(3)DenseBlock
class DenseBlock(nn.Sequential):
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(DenseBlock, self).__init__()
        for i in range(num_layers):
            if i == 0:
                self.layer = nn.Sequential(
                    DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,drop_rate)
                )
            else:
                layer = DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,drop_rate)
                self.layer.add_module("denselayer%d" % (i+1), layer)
    
    def forward(self,input):
        return self.layer(input)
 (4)Transition
class Transition(nn.Sequential):
    def __init__(self, num_input_feature, num_output_features):
        super(Transition, self).__init__()
        self.bn = nn.BatchNorm2d(num_input_feature)
        self.relu = nn.ReLU()
        self.conv = nn.Conv2d(num_input_feature, num_output_features,
                                          kernel_size=1, stride=1, bias=False)
        self.pool = nn.AvgPool2d(2, stride=2)
 
    def forward(self,input):
        output = self.bn(input)
        output = self.relu(output)
        output = self.conv(output)
        output = self.pool(output)
 
        return output
(5)DenseNet整体构建
class DenseNet(nn.Module):
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
        super(DenseNet, self).__init__()
 
        # 前部
        self.features = nn.Sequential(
            #第一层
            nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
            nn.BatchNorm2d(num_init_features),
            nn.ReLU(),
            #第二层
            nn.MaxPool2d(3, stride=2, padding=1)
        )
 
        # DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = DenseBlock(num_layers, num_features, bn_size, growth_rate,drop_rate)
            if i == 0:
                self.block_tran = nn.Sequential(
                    block
                )
            else:
                self.block_tran.add_module("denseblock%d" % (i + 1), block)#添加一个block
            num_features += num_layers*growth_rate#更新通道数
            if i != len(block_config) - 1:#除去最后一层不需要加Transition来连接两个相邻的DenseBlock
                transition = Transition(num_features, int(num_features*compression_rate))
                self.block_tran.add_module("transition%d" % (i + 1), transition)#添加Transition
                num_features = int(num_features * compression_rate)#更新通道数
 
        # 后部 bn+ReLU
        self.tail = nn.Sequential(
            nn.BatchNorm2d(num_features),
            nn.ReLU()
        )
 
        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)
 
        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):#如果是卷积层,参数kaiming分布处理
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):#如果是批量归一化则伸缩参数为1,偏移为0
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):#如果是线性层偏移为0
                nn.init.constant_(m.bias, 0)
 
    def forward(self, x):
        features = self.features(x)
        block_output = self.block_tran(features)
        tail_output = self.tail(block_output)
        out = F.avg_pool2d(tail_output, 7, stride=1).view(tail_output.size(0), -1)#平均池化
        out = self.classifier(out)
        return out

 

 

参考:DenseNet详解

DenseNet - 稠密神经网络(CNN卷积神经网络)

DenseNet 简介

 

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值