ECA-Net eca注意力机制应用于ResNet (附代码)

论文地址:https://arxiv.org/abs/1910.03151

代码地址: https://github.com/BangguWu/ECANet

1.是什么?

ECA-Net是一种深度卷积神经网络,它使用了一种称为“有效通道注意度”的注意力机制,以提高网络的性能。ECA-Net的主要贡献是提出了一种高效的通道注意力模块,可以在不增加计算成本的情况下提高网络的性能。该模块可以被集成到现有的卷积神经网络中,以提高它们的性能。ECA-Net已经在多个计算机视觉任务中取得了优异的表现,例如图像分类、目标检测和语义分割等。

2.为什么? 

ECA-Net的作者认为:SE-Net对通道注意力机制的预测带来了副作用,捕获所有通道的依赖关系是低效并且是不必要的。在ECA-Net的论文中,作者认为:卷积具有良好的跨通道信息获取能力。

ECA模块的思想是非常简单的,它去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过一个1D卷积进行学习。既然用到了1D卷积,那么1D卷积的卷积核大小的选择就变得非常重要了,了解过卷积原理的同学很快就可以明白,1D卷积的卷积核大小会影响注意力机制每个权重的计算要考虑的通道数量,用更专业的名词就是跨通道交互的覆盖率。
 

3.怎么样?

3.1 网络结构

特点:
(1)通过大小为 k 的快速一维卷积实现,其中核大小k表示 局部跨通道交互 的覆盖范围,即有多少领域参与了一个通道的注意预测 ;
(2)为了避免通过交叉验证手动调整 k,开发了一种 自适应方法 确定 k,其中跨通道交互的覆盖范围 (即核大小k) 与通道维度成比例 ; 

3.2 框图

3.3 代码实现

eca_module.py

import torch
from torch import nn
from torch.nn.parameter import Parameter
 
class eca_layer(nn.Module):
    """Constructs a ECA module.
    Args:
        channel: Number of channels of the input feature map
        k_size: Adaptive selection of kernel size
    """
    def __init__(self, channel, k_size=3):
        super(eca_layer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False) 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        # feature descriptor on the global spatial information
        y = self.avg_pool(x)
 
        # Two different branches of ECA module
        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
 
        # Multi-scale information fusion
        y = self.sigmoid(y)
 
        return x * y.expand_as(x)
        

eca_resnet.py

import torch.nn as nn
import math
# import torch.utils.model_zoo as model_zoo
from eca_module import eca_layer
 
 
def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=False)
 
 
class ECABasicBlock(nn.Module):
    expansion = 1
 
    def __init__(self, inplanes, planes, stride=1, downsample=None, k_size=3):
        super(ECABasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes, 1)
        self.bn2 = nn.BatchNorm2d(planes)
        self.eca = eca_layer(planes, k_size)
        self.downsample = downsample
        self.stride = stride
 
    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.eca(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
        out = self.relu(out)
 
        return out
 
 
class ECABottleneck(nn.Module):
    expansion = 4
 
    def __init__(self, inplanes, planes, stride=1, downsample=None, k_size=3):
        super(ECABottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)
        self.relu = nn.ReLU(inplace=True)
        self.eca = eca_layer(planes * 4, k_size)
        self.downsample = downsample
        self.stride = stride
 
    def forward(self, x):
        residual = x
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
        out = self.eca(out)
 
        if self.downsample is not None:
            residual = self.downsample(x)
 
        out += residual
        out = self.relu(out)
 
        return out
 
 
class ResNet(nn.Module):
 
    def __init__(self, block, layers, num_classes=1000, k_size=[3, 3, 3, 3]):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], int(k_size[0]))
        self.layer2 = self._make_layer(block, 128, layers[1], int(k_size[1]), stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], int(k_size[2]), stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], int(k_size[3]), stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)
 
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
 
    def _make_layer(self, block, planes, blocks, k_size, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )
 
        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample, k_size))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, k_size=k_size))
 
        return nn.Sequential(*layers)
 
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
 
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
 
        return x
 
 
def eca_resnet18(k_size=[3, 3, 3, 3], num_classes=1_000, pretrained=False):
    """Constructs a ResNet-18 model.
    Args:
        k_size: Adaptive selection of kernel size
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        num_classes:The classes of classification
    """
    model = ResNet(ECABasicBlock, [2, 2, 2, 2], num_classes=num_classes, k_size=k_size)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model
 
 
def eca_resnet34(k_size=[3, 3, 3, 3], num_classes=1_000, pretrained=False):
    """Constructs a ResNet-34 model.
    Args:
        k_size: Adaptive selection of kernel size
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        num_classes:The classes of classification
    """
    model = ResNet(ECABasicBlock, [3, 4, 6, 3], num_classes=num_classes, k_size=k_size)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model
 
 
def eca_resnet50(k_size=[3, 3, 3, 3], num_classes=1000, pretrained=False):
    """Constructs a ResNet-50 model.
    Args:
        k_size: Adaptive selection of kernel size
        num_classes:The classes of classification
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    print("Constructing eca_resnet50......")
    model = ResNet(ECABottleneck, [3, 4, 6, 3], num_classes=num_classes, k_size=k_size)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model
 
 
def eca_resnet101(k_size=[3, 3, 3, 3], num_classes=1_000, pretrained=False):
    """Constructs a ResNet-101 model.
    Args:
        k_size: Adaptive selection of kernel size
        num_classes:The classes of classification
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(ECABottleneck, [3, 4, 23, 3], num_classes=num_classes, k_size=k_size)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model
 
 
def eca_resnet152(k_size=[3, 3, 3, 3], num_classes=1_000, pretrained=False):
    """Constructs a ResNet-152 model.
    Args:
        k_size: Adaptive selection of kernel size
        num_classes:The classes of classification
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNet(ECABottleneck, [3, 8, 36, 3], num_classes=num_classes, k_size=k_size)
    model.avgpool = nn.AdaptiveAvgPool2d(1)
    return model


 

参考:

【pytorch】ECA-NET注意力机制应用于ResNet的代码实现

好的,我可以帮你更改eca_Resnet50来进行图像去噪的PyTorch代码。首先,我们需要将eca_Resnet50模型载到PyTorch中。你可以使用以下代码eca_Resnet50模型: ```python import torch import torch.nn as nn from eca_module import eca_layer from torchvision.models.resnet import ResNet, Bottleneck class ECA_ResNet(ResNet): def __init__(self, block, layers, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, use_ecalayer=True): super(ECA_ResNet, self).__init__(block, layers, num_classes=num_classes, zero_init_residual=zero_init_residual, groups=groups, width_per_group=width_per_group, replace_stride_with_dilation=replace_stride_with_dilation, norm_layer=norm_layer) if use_ecalayer: self.ecalayer = eca_layer(channel=512) else: self.ecalayer = None def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) if self.ecalayer: x = self.ecalayer(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def eca_resnet50(pretrained=False, progress=True, use_ecalayer=True, **kwargs): model = ECA_ResNet(Bottleneck, [3, 4, 6, 3], use_ecalayer=use_ecalayer, **kwargs) if pretrained: state_dict = torch.load('path/to/pretrained/eca_resnet50.pth') model.load_state_dict(state_dict) return model ``` 这里我们使用了`ECA_ResNet`类来定义`eca_resnet50`模型,该类继承了`ResNet`类,并在其基础上添了`eca_layer`。使用`use_ecalayer`参数可以控制是否使用`eca_layer`。如果`use_ecalayer`为True,则在最后一个卷积层后添`eca_layer`层,否则不添。 接下来,我们需要定义图像去噪的损失函数。在这里,我们可以使用均方误差(MSE)损失函数,即将输入图像与目标图像之间的像素值之差的平方和作为损失函数: ```python import torch.nn.functional as F def denoise_loss(input_image, target_image): mse_loss = F.mse_loss(input_image, target_image) return mse_loss ``` 最后,我们可以使用以下代码来定义训练循环: ```python import torch.optim as optim device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 载模型 model = eca_resnet50(pretrained=True, use_ecalayer=True).to(device) # 定义优化器和学习率 optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练循环 for epoch in range(num_epochs): running_loss = 0.0 for i, data in enumerate(train_loader, 0): # 获取训练数据 inputs, targets = data[0].to(device), data[1].to(device) # 清空梯度 optimizer.zero_grad() # 前向传播 outputs = model(inputs) # 计算损失 loss = denoise_loss(outputs, targets) # 反向传播和优化 loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() if i % 100 == 99: print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 100)) running_loss = 0.0 ``` 在这里,我们使用Adam优化器进行模型优化,并将模型移动到GPU设备(如果可用)。在训练循环中,我们首先获取训练数据,然后清空梯度,进行前向传播,并计算损失。接下来,我们进行反向传播并优化模型。最后,我们打印统计信息,以便跟踪模型的训练进展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值