【CVPR2021】LoFTR: Detector-Free Local Feature Matching with Transformers

LoFTR: Detector-Free Local Feature Matching with Transformers

论文链接:LoFTR: Detector-Free Local Feature Matching with Transformers | IEEE Conference Publication | IEEE Xplore

代码:zju3dv/LoFTR: Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021, T-PAMI 2022 (github.com)

Abstract

We present a novel method for local image feature matching. Instead of performing image feature detection, description, and matching sequentially, we propose to first establish pixel-wise dense matches at a coarse level and later refine the good matches at a fine level. In contrast to dense methods that use a cost volume to search correspondences, we use self and cross attention layers in Transformer to obtain feature descriptors that are conditioned on both images. The global receptive field provided by Transformer enables our method to produce dense ma

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值