旋转的描述【1】——方向余弦矩阵

1.定义

方向余弦矩阵是由两组不同标准正交基基底向量之间的方向余弦所形成的矩阵。
 通常一个矢量 V V V在某个坐标系内可用矢量的坐标该坐标系的标准正交基来表示。例如,一个矢量在直角 X Y Z XYZ XYZ坐标系下的坐标为 ( a , b , c ) (a,b,c) (a,b,c),则 V = a i + b j + c k V=ai+bj+ck V=ai+bj+ck。这里的 i , j , k i,j,k i,j,k即为坐标系的标准正交基,分别是 X Y Z XYZ XYZ三轴的单位矢量,模值均为1。
 方向余弦矩阵可以用来表达一组标准正交基与另一组标准正交基之间的转化关系,也可以用来表达一个向量对于另一组标准正交基的方向余弦。换句话说,方向余弦矩阵可以表示两个坐标系间的角位置关系,也可以表示一个向量相对于一个坐标系的角位置。

2.推导

2.1 已知条件

 如定义所言,标准正交基可以确定一个坐标系。
 假设有一个坐标系n,经绕着原点的旋转后到达坐标系b,那如何表示旋转后的坐标系b呢?我们自然想到,如果坐标系b的标准正交基可以用坐标系n的标准正交基表示,那么就可以在坐标系n内确定坐标系b,两个坐标系的相对角位置就确定了。

2.2 推导目标

 将坐标系b的标准正交基用坐标系n的标准正交基表示,换句话讲,求坐标系b标准正交基在坐标系n内的坐标。

2.3 推导过程

 先看二维情况,如图所示,假设坐标系 X b Y b X_{b}Y_{b} XbYb和坐标系 X n Y n X_{n}Y_{n} XnYn,分别称为 b b b系和 n n n系,其基底分别为 i b , j b i_{b},j_{b} ib,jb i n , j n i_{n},j_{n} in,jn,坐标系 b b b由坐标系 n n n旋转得到。考虑用 n n n系的标准正交基来表示 b b b的标准正交基,于是将 b b b系标准正交基的基底(以下简称基底)投影到 n n n系。结合向量内积的含义,得到如下图所示的关系。
描述个屁,看图自明
 如上图所示,基底 i b i_{b} ib需要投影到 n n n系下水平 i n i_{n} in和垂直 j n j_{n} jn两个方向。先看投影到 i n i_{n} in的部分,投影到 i n i_{n} in的分量由两部分构成,前面括号里的内积 i b ⋅ i n i_{b} \cdot i_{n} ibin表示 i b i_{b} ib投影到 i n i_{n} in的大小,后面的 i n i_{n} in表示投影矢量方向。由于两个矢量都是单位矢量,
i b ⋅ i n = ∣ i b ∣ ∗ ∣ i n ∣ ∗ c o s ⟨ i b , i n ⟩ = ∣ i b ∣ ∗ c o s ⟨ i b , i n ⟩ = c o s ⟨ i b , i n ⟩ (1) i_{b} \cdot i_{n}=\lvert i_{b}\rvert* \lvert i_{n}\rvert * cos \left \langle i_{b},i_{n} \right \rangle=\lvert i_{b}\rvert * cos \left \langle i_{b},i_{n} \right \rangle=cos \left \langle i_{b},i_{n} \right \rangle\tag{1} ibin=ibincosib,in=ibcosib,in=cosib,in(1)类比可以得到 i b i_{b} ib投影到 n n n系下垂直 j n j_{n} jn方向的分量。
于是,基底 i b i_{b} ib n n n系下可以表示为
i b = ( i b ⋅ i n ) i n + ( i b ⋅ j n ) j n (2) i_{b}=(i_{b} \cdot i_{n})i_{n}+(i_{b} \cdot j_{n})j_{n}\tag{2} ib=(ibin)in+(ibjn)jn(2)同理可得,基底 j b j_{b} jb n n n系下可以表示为
j b = ( j b ⋅ i n ) i n + ( j b ⋅ j n ) j n (3) j_{b}=(j_{b} \cdot i_{n})i_{n}+(j_{b} \cdot j_{n})j_{n}\tag{3} jb=(jbin)in+(jbjn)jn(3)
将式 ( 2 ) ( 3 ) (2)(3) (2)(3)写为矩阵形式有,
[ i b j b ] = [ i n j n ] [ i b ⋅ i n j b ⋅ i n i b ⋅ j n j b ⋅ j n ] (4) \left [ \begin{matrix} i_{b} & j_{b} \end{matrix}\right ]=\left [ \begin{matrix} i_{n} & j_{n} \end{matrix}\right ]\begin{bmatrix} i_{b}\cdot i_{n} & j_{b}\cdot i_{n}\\ i_{b}\cdot j_{n}& j_{b}\cdot j_{n} \end{bmatrix}\tag{4} [ibjb]=[injn][ibinibjnjbinjbjn](4)
结合 ( 1 ) (1) (1)式,上式可写为
[ i b j b ] = [ i n j n ] [ c o s ⟨ i b , i n ⟩ c o s ⟨ j b , i n ⟩ c o s ⟨ i b , j n ⟩ c o s ⟨ j b , j n ⟩ ] (4) \left [ \begin{matrix} i_{b} & j_{b} \end{matrix}\right ]=\left [ \begin{matrix} i_{n} & j_{n} \end{matrix}\right ]\begin{bmatrix} cos \left \langle i_{b},i_{n} \right \rangle &cos \left \langle j_{b},i_{n} \right \rangle\\ cos \left \langle i_{b},j_{n} \right \rangle& cos \left \langle j_{b},j_{n} \right \rangle \end{bmatrix}\tag{4} [ibjb]=[injn][cosib,incosib,jncosjb,incosjb,jn](4)
 将以上情况推广到三维情况下时,标准正交基中增加基底 k k k,容易得到相应的基底变换式为:
[ i b j b k b ] = [ i n j n k b ] [ c o s ⟨ i b , i n ⟩ c o s ⟨ j b , i n ⟩ c o s ⟨ k b , i n ⟩ c o s ⟨ i b , j n ⟩ c o s ⟨ j b , j n ⟩ c o s ⟨ k b , j n ⟩ c o s ⟨ i b , k n ⟩ c o s ⟨ j b , k n ⟩ c o s ⟨ k b , k n ⟩ ] = [ i n j n k b ] P n b (5) \begin{aligned}\left [ \begin{matrix} i_{b} & j_{b}& k_{b} \end{matrix}\right ]&=\left [ \begin{matrix} i_{n} & j_{n}& k_{b} \end{matrix}\right ]\begin{bmatrix} cos \left \langle i_{b},i_{n} \right \rangle &cos \left \langle j_{b},i_{n} \right \rangle&cos \left \langle k_{b},i_{n} \right \rangle\\ cos \left \langle i_{b},j_{n} \right \rangle& cos \left \langle j_{b},j_{n} \right \rangle& cos \left \langle k_{b},j_{n} \right \rangle\\ cos \left \langle i_{b},k_{n} \right \rangle& cos \left \langle j_{b},k_{n} \right \rangle& cos \left \langle k_{b},k_{n} \right \rangle\\ \end{bmatrix} \\ &= \left [ \begin{matrix} i_{n} & j_{n}& k_{b} \end{matrix}\right ]P_{n}^b\end{aligned}\tag{5} [ibjbkb]=[injnkb]cosib,incosib,jncosib,kncosjb,incosjb,jncosjb,kncoskb,incoskb,jncoskb,kn=[injnkb]Pnb(5)
 下面分析式 ( 5 ) (5) (5)。整体来看,通过矩阵 P n b P_{n}^b Pnb即可利用 n n n系基底表示 b b b系基底,因此称 P n b P_{n}^b Pnb为从 n n n系到 b b b过渡矩阵,或 坐标系/基 变换矩阵,其中 P n b P_{n}^b Pnb的列向量为 b b b系三个基底分别与 n n n系三个基底的夹角余弦,而行向量为 n n n系三个基底分别与 b b b系三个基底的夹角余弦。
 考虑如何将 b b b系下的坐标转换为 n n n系下。假设有向量 V V V,其在两个坐标系下的表示为 V = V x n i n + V y n j n + V z n k n = V x b i b + V y b j b + V z b k b \\V=V_{x}^{n}i_{n}+V_{y}^{n}j_{n}+V_{z}^{n}k_{n}=V_{x}^{b}i_{b}+V_{y}^{b}j_{b}+V_{z}^{b}k_{b} V=Vxnin+Vynjn+Vznkn=Vxbib+Vybjb+Vzbkb,写成向量的形式为:
[ i n j n k n ] [ V x n V y n V z n ] = [ i b j b k b ] [ V x b V y b V z b ] (6) \left [ \begin{matrix} i_{n} & j_{n}& k_{n} \end{matrix}\right ]\left [ \begin{matrix} V_{x}^{n}\\ V_{y}^{n}\\ V_{z}^{n} \end{matrix}\right ]=\left [ \begin{matrix} i_{b} & j_{b}& k_{b} \end{matrix}\right ]\left [ \begin{matrix} V_{x}^{b}\\ V_{y}^{b}\\ V_{z}^{b} \end{matrix}\right ]\tag{6} [injnkn]VxnVynVzn=[ibjbkb]VxbVybVzb(6)
( 5 ) (5) (5)式代入上式,可得:
[ i n j n k n ] [ V x n V y n V z n ] = [ i n j n k n ] P n b [ V x b V y b V z b ] (7) \left [ \begin{matrix} i_{n} & j_{n}& k_{n} \end{matrix}\right ]\left [ \begin{matrix} V_{x}^{n}\\ V_{y}^{n}\\ V_{z}^{n} \end{matrix}\right ]=\left [ \begin{matrix} i_{n} & j_{n}& k_{n} \end{matrix}\right ]P_{n}^b \left [ \begin{matrix} V_{x}^{b}\\ V_{y}^{b}\\ V_{z}^{b} \end{matrix}\right ]\tag{7} [injnkn]VxnVynVzn=[injnkn]PnbVxbVybVzb(7)
上式中,显然 [ i n j n k n ] \left [ \begin{matrix} i_{n} & j_{n}& k_{n} \end{matrix}\right ] [injnkn]可逆,于是有
[ V x n V y n V z n ] = P n b [ V x b V y b V z b ] (8) \left [ \begin{matrix} V_{x}^{n}\\ V_{y}^{n}\\ V_{z}^{n} \end{matrix}\right ]=P_{n}^b \left [ \begin{matrix} V_{x}^{b}\\ V_{y}^{b}\\ V_{z}^{b} \end{matrix}\right ]\tag{8} VxnVynVzn=PnbVxbVybVzb(8)
观察上式可以发现 P n b P_{n}^b Pnb不仅为从 n n n系到 b b b过渡矩阵,也是从 b b b系到 n n n坐标变换矩阵,为体现坐标变换将 P n b P_{n}^b Pnb记为 C b n C_{b}^n Cbn。又因为 C b n C_{b}^n Cbn由两坐标轴间夹角的余弦值构成,故又称方向余弦矩阵

3.总结

 本文以旋转前后两坐标系的标准正交基投影关系切入,将旋转后坐标系的标准正交基用旋转前坐标系的标准正交基表示,从而建立起坐标系间的变换关系。然后,根据坐标系间基底的变换关系,推导出两坐标系坐标的变换公式,同时得到了方向余弦矩阵。

4.参考文献

《捷联惯导算法与组合导航原理》严恭敏 P9—P10 2.2.1方向余弦阵

  • 9
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值