070-地固系下的精对准方案

对于地固系下的姿态与速度微分方程:

C ˙ b e = C b e ∗ Ω e b b \dot C_b^e = C_b^e * \Omega_{eb}^b C˙be=CbeΩebb

v ˙ e = f i b e − 2 Ω i e e v e + g e \dot v^e = f_{ib}^e - 2\Omega_{ie}^e v^e + g^e v˙e=fibe2Ωieeve+ge

对准时,令速度微分方程中 v e = 0 v^e=0 ve=0,那么对于姿态与速度误差方程,参考065-松组合备忘之捷联惯导不难得到:

φ ˙ e = − Ω i e e φ e − C b e d − C b e ε g \dot \varphi^e = -\Omega_{ie}^e \varphi^e - C_b^e d - C_b^e \varepsilon_g φ˙e=ΩieeφeCbedCbeεg

δ v ˙ e = [ ( C b e f i b b ) × ] φ e + C b e b + C b e ε a \delta \dot v^e = [(C_b^e f_{ib}^b)×]\varphi ^e + C_b^e b + C_b^e \varepsilon_a δv˙e=[(Cbefibb)×]φe+Cbeb+Cbeεa

为推导方便,去除观测噪声 ε \varepsilon ε,将上述两式改写一下:

φ ˙ e = φ e × ω − d e \dot \varphi^e = \varphi^e×\omega - d^e φ˙e=φe×ωde

δ v ˙ e = f i b e × φ e + b e \delta \dot v^e = f_{ib}^e×\varphi ^e + b^e δv˙e=fibe×φe+be

其中的等价关系不再特意说明。
将上述姿态误差方程展开:

{ ϕ ˙ x = ω z ϕ y − ω y ϕ z − d x ϕ ˙ y = ω x ϕ z − ω z ϕ x − d y ϕ ˙ z = ω y ϕ x − ω x ϕ y − d z \begin{cases} \dot \phi_x = \omega_z \phi_y - \omega_y \phi_z - d_x \\ \dot \phi_y = \omega_x \phi_z - \omega_z \phi_x - d_y \\ \dot \phi_z = \omega_y \phi_x - \omega_x \phi_y - d_z \\ \end{cases} ϕ˙x=ωzϕyωyϕzdxϕ˙y=ωxϕzωzϕxdyϕ˙z=ωyϕxωxϕydz

注意: ω = [ 0 ; 0 ; ω e ] \omega = [0;0;\omega^e] ω=[0;0;ωe],所以:

{ ϕ ˙ x = ω z ϕ y − d x ϕ ˙ y = − ω z ϕ x − d y ϕ ˙ z = − d z \begin{cases} \dot \phi_x = \omega_z \phi_y - d_x \\ \dot \phi_y = - \omega_z \phi_x - d_y \\ \dot \phi_z = -d_z \\ \end{cases} ϕ˙x=ωzϕydxϕ˙y=ωzϕxdyϕ˙z=dz

可见,载体在e系中的z方向失准角不能进行估计;

对速度误差方程进行展开:

{ δ v x ˙ = ϕ z f y − ϕ y f z + b x δ v y ˙ = ϕ x f z − ϕ z f x + b y δ v z ˙ = ϕ y f x − ϕ x f y + b z \begin{cases} \dot {\delta v_x} = \phi_z f_y - \phi_y f_z + b_x \\ \dot {\delta v_y} = \phi_x f_z - \phi_z f_x + b_y \\ \dot {\delta v_z} = \phi_y f_x - \phi_x f_y + b_z \\ \end{cases} δvx˙=ϕzfyϕyfz+bxδvy˙=ϕxfzϕzfx+byδvz˙=ϕyfxϕxfy+bz

静基座下,近似 f e ≈ − g e f^e \approx -g^e fege g e = [ g x ; g y ; g z ] g^e=[g_x;g_y;g_z] ge=[gx;gy;gz],那么:

{ δ v x ˙ = ϕ y g z − ϕ z g y + b x δ v y ˙ = ϕ z g x − ϕ x g z + b y δ v z ˙ = ϕ x g y − ϕ y g x + b z \begin{cases} \dot {\delta v_x} = \phi_y g_z - \phi_z g_y + b_x \\ \dot {\delta v_y} = \phi_z g_x - \phi_x g_z + b_y \\ \dot {\delta v_z} = \phi_x g_y - \phi_y g_x + b_z \\ \end{cases} δvx˙=ϕygzϕzgy+bxδvy˙=ϕzgxϕxgz+byδvz˙=ϕxgyϕygx+bz

将b,d扩充为状态,建立初始对准状态空间模型:

{ X ˙ = F X Z = H X \begin{cases} \dot X = F X \\ Z = H X \end{cases} {X˙=FXZ=HX

其中:

X = [ ϕ x ϕ y ϕ z δ v x δ v y δ v z d x d y d z b x b y b z ] , F = [ 0 ω z 0 0 0 0 − 1 0 0 0 0 0 − ω z 0 0 0 0 0 0 − 1 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 g z − g y 0 0 0 0 0 0 1 0 0 − g z 0 g x 0 0 0 0 0 0 0 1 0 g y − g x 0 0 0 0 0 0 0 0 0 1 0 6 × 12 ] X= \begin{bmatrix} \phi_x \\ \phi_y \\ \phi_z \\ \delta v_x \\ \delta v_y \\ \delta v_z \\ d_x \\ d_y \\ d_z \\ b_x \\ b_y \\ b_z \end{bmatrix}, F = \begin{bmatrix} 0 &\omega_z &0 &0 &0 &0 &-1 &0 &0 &0 &0 &0\\ -\omega_z &0 &0 &0 &0 &0 &0 &-1 &0 &0 &0 &0\\ 0 &0 &0 &0 &0 &0 &0 &0 &-1 &0 &0 &0\\ 0 &g_z &-g_y &0 &0 &0 &0 &0 &0 &1 &0 &0\\ -g_z &0 &g_x &0 &0 &0 &0 &0 &0 &0 &1 &0\\ g_y &-g_x &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ &&&&&0_{6×12} \end{bmatrix} X=ϕxϕyϕzδvxδvyδvzdxdydzbxbybz,F=0ωz00gzgyωz00gz0gx000gygx000000000000000000006×12100000010000001000000100000010000001

H = [ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ] H = \begin{bmatrix} 0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ 0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ 0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \end{bmatrix} H=000000000100010001000000000000000000

系统的可观测性矩阵为:

O = [ H H F ⋮ H F 11 ] = [ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 g z − g y 0 0 0 0 0 0 1 0 0 − g z 0 g x 0 0 0 0 0 0 0 1 0 g y − g x 0 0 0 0 0 0 0 0 0 1 − g z ω z 0 0 0 0 0 0 − g z g y 0 0 0 0 − g z ω z 0 0 0 0 g z 0 − g x 0 0 0 g x ω z g y ω z 0 0 0 0 − g y g x 0 0 0 0 0 − g z ω z 2 0 0 0 0 g z ω z 0 0 0 0 0 g z ω z 2 0 0 0 0 0 0 g z ω z 0 0 0 0 − g y ω z 2 g x ω z 2 0 0 0 0 − g x ω z − g y ω z 0 0 0 0 ⋮ ] O = \begin{bmatrix} H\\ HF\\ \vdots\\ HF^{11} \end{bmatrix} = \begin{bmatrix} 0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0 &0\\ 0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ 0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ 0 &g_z &-g_y &0 &0 &0 &0 &0 &0 &1 &0 &0 \\ -g_z &0 &g_x &0 &0 &0 &0 &0 &0 &0 &1 &0 \\ g_y &-g_x &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 \\ -g_z \omega_z &0 &0 &0 &0 &0 &0 &-g_z &g_y &0 &0 &0\\ 0 &-g_z \omega_z &0 &0 &0 &0 &g_z &0 &-g_x &0 &0 &0\\ g_x \omega_z &g_y \omega_z &0 &0 &0 &0 &-g_y &g_x &0 &0 &0 &0\\ 0 &-g_z \omega_z^2 &0 &0 &0 &0 &g_z \omega_z &0 &0 &0 &0 &0\\ g_z \omega_z^2 &0 &0 &0 &0 &0 &0 &g_z \omega_z &0 &0 &0 &0\\ -g_y \omega_z^2 &g_x \omega_z^2 &0 &0 &0 &0 &-g_x \omega_z &-g_y \omega_z &0 &0 &0 &0\\ &&&&&&\vdots \end{bmatrix} O=HHFHF11=0000gzgygzωz0gxωz0gzωz2gyωz2000gz0gx0gzωzgyωzgzωz20gxωz2000gygx00000001000000000000100000000000010000000000000000gzgygzωz0gxωz000000gz0gx0gzωzgyωz000000gygx0000000100000000000010000000000001000000

系统的状态为12维,通过可观测性判断矩阵O可知,其12行各行均不相关,即 r a n k ( O ) ≥ 12 rank(O) \geq 12 rank(O)12,所以状态向量X中各个状态均可观测。关于系统的可观测性判断可参考:069-线性系统的可控性和可观测性

建立12维随机系统模型如下:

{ X ˙ = F X + G W b Z = H X + V \begin{cases} \dot X = FX + GW^b \\ Z=HX+V \end{cases} {X˙=FX+GWbZ=HX+V

其中:

X = [ φ δ v d b ] , F = [ − Ω i e e O 3 × 3 − C b e O 3 × 3 − g e × O 3 × 3 O 3 × 3 C b e O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 ] , G = [ − C b e O 3 × 3 O 3 × 3 C b e O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 ] , W b = [ ε g ε a ] X= \begin{bmatrix} \varphi \\ \delta v \\ d \\ b\\ \end{bmatrix}, F = \begin{bmatrix} -\Omega_{ie}^e & O_{3×3} & -C_b^e & O_{3×3}\\ -g^e × &O_{3×3} &O_{3×3} &C_b^e \\ O_{3×3} &O_{3×3} &O_{3×3} &O_{3×3}\\ O_{3×3} &O_{3×3} &O_{3×3} &O_{3×3}\\ \end{bmatrix}, G = \begin{bmatrix} -C_b^e & O_{3×3} \\ O_{3×3} & C_b^e \\ O_{3×3} &O_{3×3} \\ O_{3×3} &O_{3×3} \\ \end{bmatrix}, W^b = \begin{bmatrix} \varepsilon_g \\ \varepsilon_a \end{bmatrix} X=φδvdb,F=Ωieege×O3×3O3×3O3×3O3×3O3×3O3×3CbeO3×3O3×3O3×3O3×3CbeO3×3O3×3,G=CbeO3×3O3×3O3×3O3×3CbeO3×3O3×3,Wb=[εgεa]

Z = [ v ] , H = [ O 3 × 3 I 3 × 3 O 3 × 3 O 3 × 3 ] , V = [ ε v ] Z = \begin{bmatrix} v \end{bmatrix}, H = \begin{bmatrix} O_{3×3} &I_{3×3} &O_{3×3} &O_{3×3}\\ \end{bmatrix}, V = \begin{bmatrix} \varepsilon_v \end{bmatrix} Z=[v],H=[O3×3I3×3O3×3O3×3],V=[εv]

当然,一般也可以将F表示为:

F = [ − Ω i e e O 3 × 3 − C b e O 3 × 3 f i b e × O 3 × 3 O 3 × 3 C b e O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 O 3 × 3 ] F = \begin{bmatrix} -\Omega_{ie}^e & O_{3×3} & -C_b^e & O_{3×3}\\ f_{ib}^e × &O_{3×3} &O_{3×3} &C_b^e \\ O_{3×3} &O_{3×3} &O_{3×3} &O_{3×3}\\ O_{3×3} &O_{3×3} &O_{3×3} &O_{3×3}\\ \end{bmatrix} F=Ωieefibe×O3×3O3×3O3×3O3×3O3×3O3×3CbeO3×3O3×3O3×3O3×3CbeO3×3O3×3

组合一下很容易发现,该对准模型就是前面065-松组合备忘之捷联惯导得出的松组合卡尔曼滤波算法的简化版。


测试结果

068-地固系下的粗对准方案的结果对比,效果差不多。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值