python加载mnist数据集

本文介绍了如何使用Python和TensorFlow从头开始加载经典MNIST数据集,并展示了数据预处理、样本可视化和one-hot编码的过程。通过实例代码演示了如何获取数据、查看标签和创建数据可视化图表。
摘要由CSDN通过智能技术生成

在Nvidia Digits上用tensorflow框架直接拿来使用的mnist数据集十分方便,现在为了究竟,使用Python直接实现加载mnist数据集。

from tensorflow.example.tutorials.mnist import input_data
import tensorflow as tf
#加载数据集
mnist = input_data.read_data_sets('E:/soft/MNIST_DATA',one_hot=True)
#加载训练集样本
tran_x = mnist.train.images
#加载验证集样本
validation_x = mnist.validation.image
#加载测试样本
test_x = mnist.test.images

#加载训练集标签
train_y = mnist.train.labels
#加载测试集标签
test_y = mnist.test.labels
print('train_x.shape:',train_x.shape,'train_y.shape:',rain_y.shape)
#查看训练集中第一个样本的内容和标签
print(train_x[1])
print(train_y[1])
#获取训练集数据的前100个
images.labels = mnist.train.next_batch(100)
print('images.shape:',images.shape,'labels.shape',labels.shape)

#数据可视化
import matplotlib.pylpot as pit
#绘制训练集前20个样本
fig.ax = plt.subplots(nrows=4,ncols=5)
ax = ax.flatten()
for i in range(20)
	img = train_x[i].reshape(28,28)
	ax[i].imshow(img,cmap='Greys')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.show()

onhot编码是:
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ]
绘制前20张样本图片
onhot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客范儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值