讲透一个强大的算法模型,Transformer

今天给大家介绍一个超强的算法模型,Transformer

Transformer 模型是一种基于注意力机制的深度学习模型,广泛应用于自然语言处理(NLP)任务,如机器翻译、文本生成和语义理解。

它最初由 Vaswani 等人在2017年的论文《Attention is All You Need》中提出。它突破了传统序列模型(如RNN和LSTM)的局限,能够并行处理序列数据,从而大大提高了训练效率和模型性能。

Transformer 模型的基本结构

Transformer 模型由两个主要部分组成:编码器(Encoder)和 解码器(Decoder)。

编码器将输入序列编码为一个固定长度的上下文向量,解码器则根据这个上下文向量生成输出序列。

编码器和解码器各由多个层(Layer)堆叠而成。

  1. 编码器(Encoder)

    编码器的主要作用是将输入序列转换为一组上下文向量,供解码器使用。

    每个编码器层包括两个主要的子层:

    每个子层之后都会使用残差连接(Residual Connection)和层归一化(Layer Normalization),这有助于避免梯度消失问题并加快训练收敛速度。

  • 多头自注意力机制(Multi-Head Self-Attention)

    捕捉输入序列中不同位置之间的依赖关系。

    通过不同的注意力头(Attention Heads),模型可以从多个不同的角度来看待输入序列。

  • 前馈神经网络(Feed-Forward Neural Network, FFN)

    对经过注意力机制处理的序列进行进一步的非线性变换。

  1. 解码器(Decoder)

    与编码器类似,解码器也由多个层组成,每个解码器层包含三个子层:

    每个子层同样有残差连接和层归一化。

  • 掩码多头自注意力机制

    与编码器中的多头自注意力机制类似,但在解码器中,解码器的多头自注意力机制是掩蔽(Masked)的,防止在预测下一个单词时看到未来的信息。

  • 编码器-解码器多头注意力机制(Encoder-Decoder Attention)

    该注意力机制允许解码器访问编码器的输出,这样解码器就可以根据编码器生成的上下文向量来生成输出序列。

  • 前馈神经网络(Feed-Forward Neural Network, FFN)

    与编码器中的FFN相同,用于对注意力机制的输出进行非线性变换。

核心组件

下面,我们来详细描述一下 Transformer 中的核心组件。

1.输入嵌入

输入嵌入是将输入文本序列中的单词或符号映射为高维向量的过程。

在 Transformer 模型中,文本首先被标记化为单词或子词,然后每个标记被映射为一个固定长度的向量。

这些向量通常是通过查找嵌入矩阵(embedding matrix)得到的,该矩阵是在训练过程中学习得到的。

输入嵌入的作用是将离散的符号转换为连续的、可以直接输入到神经网络中的向量表示,使得模型能够处理和理解输入数据。

2.位置编码

位置编码(Positional Encoding)是 Transformer 模型中的一个关键组件,用于在模型中引入序列位置信息。

由于 Transformer 模型不使用传统的循环神经网络(RNN)结构,它无法像这些传统模型那样通过其结构直接捕获输入数据的位置信息。因此,需要通过位置编码来显式地提供序列中的位置信息。

位置编码通常使用正弦和余弦函数来生成。

对于位置 pos 和嵌入维度中的第 个维度

对于位置 pos 和嵌入维度中的第 2i + 1 个维度:

其中:

  • pos 是位置索引。

  • i 是维度索引。

  • 是嵌入向量的维度。

3.自主力机制

自注意力机制是 Transformer 的核心创新之一。

它允许模型在计算某个位置的输出时,考虑输入序列中所有其他位置的信息。

具体地,对于每个输入位置,自注意力机制会计算该位置与其他所有位置的相似度(通过点积操作),并使用这些相似度作为权重来加权求和其他位置的输入表示。

自注意力机制的关键步骤包括:

  • Query、Key、Value 向量的生成

    对输入嵌入进行线性变换,生成三个不同的向量,即查询向量(Query)、键向量(Key)和值向量(Value)。

    每个输入向量 ,通过三个线性变换分别映射为查询向量 、键向量 和值向量 。

    这些向量用于后续的注意力计算。

    其中,、 和 是可学习的权重矩阵。

  • 注意力得分的计算

    通过点积计算查询向量与所有键向量之间的相似度,得到注意力得分矩阵。

    对于每个查询向量 ,通过点积的方式计算它与所有键向量 的相似度,得到注意力分数。

    为了稳定训练过程,这些分数会除以 ,其中 是键向量的维度。

  • 加权求和

    使用Softmax函数将注意力得分转换为权重,然后对所有值向量进行加权求和,得到最终的输出表示。

4.多头注意力机制

多头注意力机制是对自注意力机制的扩展。

通过并行地执行多次自注意力机制,可以让模型从不同的角度(即不同的“头”)学习输入序列中的信息。

每个头都有自己独立的查询、键和值的线性变换,然后分别执行自注意力操作,最后将这些头的输出进行拼接,并通过线性变换生成最终的多头注意力输出。

具体来说,假设有 h 个注意力头,每个头分别计算如下:

其中, , , 是第 i 个头的查询、键和值的权重矩阵。

然后,将所有头的输出连接起来,并通过线性变换:

其中, 是输出的权重矩阵。

多头注意力机制的优点在于它能够捕捉到不同的语义关系和特征,从而增强模型的表达能力。

5.前馈神经网络

每个编码器和解码器层中的前馈神经网络是一个两层的全连接神经网络,作用是对每个位置的表示进行独立的非线性变换。

公式表示如下:

其中, 和 是权重矩阵, 和 是偏置向量。

6. 层归一化和残差连接

为了防止深层网络的梯度消失问题,Transformer 在每个子层后使用了残差连接,并紧跟层归一化。

其中, 可以是多头注意力机制或前馈神经网络的输出。

7.掩码多头自注意力

在标准的多头注意力机制中,每个位置的查询(Query)会与所有位置的键(Key)进行点积计算,得到注意力分数,然后与值(Value)加权求和,生成最终的输出。

然而,在解码器中,生成序列时不能访问未来的信息。因此需要使用掩码(Mask)机制来屏蔽掉未来位置的信息。

具体来说,在计算注意力得分时,对未来的位置进行屏蔽,将这些位置的得分设为负无穷大,使得 Softmax 归一化后的权重为零。

8.编码器-解码器多头注意力

在解码器中的 Multi-head Attention 也叫做 Encoder-Decoder Attention,它的 Query 来自解码器的 self-attention,而 Key、Value 则是编码器的输出。

案例代码

下面是一个使用 PyTorch 实现 Transformer 模型的简单示例代码。

该示例展示了如何构建一个基本的 Transformer 模型并使用它进行序列到序列的任务,例如机器翻译。

import torch  
import torch.nn as nn  
import torch.optim as optim  
import math  
  
class PositionalEncoding(nn.Module):  
    def __init__(self, d_model, max_len=5000):  
        super(PositionalEncoding, self).__init__()  
        pe = torch.zeros(max_len, d_model)  
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)  
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))  
        pe[:, 0::2] = torch.sin(position * div_term)  
        pe[:, 1::2] = torch.cos(position * div_term)  
        pe = pe.unsqueeze(0).transpose(0, 1)  
        self.register_buffer('pe', pe)  
  
    def forward(self, x):  
        x = x + self.pe[:x.size(0), :]  
        return x  
  
class TransformerModel(nn.Module):  
    def __init__(self, input_dim, output_dim, d_model=512, nhead=8, num_encoder_layers=6, dim_feedforward=2048, dropout=0.1):  
        super(TransformerModel, self).__init__()  
        self.model_type = 'Transformer'  
        self.embedding = nn.Embedding(input_dim, d_model)  
        self.pos_encoder = PositionalEncoding(d_model)  
        encoder_layers = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)  
        self.transformer_encoder = nn.TransformerEncoder(encoder_layers, num_encoder_layers)  
        self.d_model = d_model  
        self.decoder = nn.Linear(d_model, output_dim)  
        self.init_weights()  
  
    def init_weights(self):  
        initrange = 0.1  
        self.embedding.weight.data.uniform_(-initrange, initrange)  
        self.decoder.bias.data.zero_()  
        self.decoder.weight.data.uniform_(-initrange, initrange)  
  
    def forward(self, src, src_mask):  
        src = self.embedding(src) * math.sqrt(self.d_model)  
        src = self.pos_encoder(src)  
        output = self.transformer_encoder(src, src_mask)  
        output = self.decoder(output)  
        return output  
  
def generate_square_subsequent_mask(sz):  
    mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)  
    mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))  
    return mask  
  
# Example usage:  
input_dim = 1000  # Vocabulary size  
output_dim = 1000  # Output size  
seq_length = 10  # Length of the sequence  
  
# Create the model  
model = TransformerModel(input_dim=input_dim, output_dim=output_dim)  
  
# Example data  
src = torch.randint(0, input_dim, (seq_length, 32))  # (sequence_length, batch_size)  
src_mask = generate_square_subsequent_mask(seq_length)  
  
# Forward pass  
output = model(src, src_mask)  
print(output.shape)  # Expected output: [sequence_length, batch_size, output_dim]  
  
# Define a simple loss and optimizer for training  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.Adam(model.parameters(), lr=0.001)  
  
# Example training loop  
for epoch in range(10):  # Number of epochs  
    optimizer.zero_grad()  
    output = model(src, src_mask)  
    loss = criterion(output.view(-1, output_dim), src.view(-1))  
    loss.backward()  
    optimizer.step()  
    print(f"Epoch {epoch+1}, Loss: {loss.item()}")

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值