基于transformer的脑机接口技术:
解码大脑信号,开启智能交互新时代
Exploring the Frontier: Transformer-Based Analysis for Brain-Computer Interfaces
本期导读
随着科技的发展,脑机接口(BCI)技术逐渐从实验室走向实际应用场景,尤其在医疗康复、辅助沟通、智能控制等领域展示了广阔前景。近年来,基于transformer的深度学习模型因其强大的数据处理能力,在BCI信号处理和解码中展现出革命性的突破。通过自注意力机制,transformer能够捕捉大脑电信号中的复杂特征,为实现更高精度的BCI解码提供了强有力的支持。本期文章将详细介绍基于transformer的BCI技术原理、信号采集和处理流程,探讨其在不同应用场景中的优势,并对未来发展趋势进行展望。
01.第1节 脑机接口技术的背景与挑战
脑机接口(BCI)通过采集和解码大脑电信号(EEG)直接将用户的意图转化为控制指令,使其能够操控外部设备。BCI的原理在于将大脑中的神经活动转换为机器可以理解的信号,然而,这一过程极其复杂,主要面临以下挑战:
(1)EEG信号复杂且微弱:EEG信号是一种多维、非线性的脑电活动,频率较低且信号幅度较小,极易受到环境和生理因素(如肌电噪声、眼动干扰等)的影响,这使得有效信号的提取变得十分困难。
(2)信号处理过程繁琐:传统的BCI系统需要依赖大量手工特征提取和预处理步骤,才能获得可靠的解码结果。然而,手工设计的特征提取方法往往需要专业知识,且难以适应不同用户和任务。
(3)解码精度受限:由于脑信号的多样性和个体差异,传统BCI在解码精度方面仍然存在很大局限,尤其是复杂的运动想象和情感识别任务中。
基于这些挑战,BCI领域亟需一种更高效的解码方式,而基于transformer的深度学习模型正是在此背景下逐渐受到关注。
02.第2节 transformer****模型在BCI中的应用
transformer模型最早应用于自然语言处理(NLP),凭借其强大的序列数据处理能力迅速成为AI领域的核心工具。与传统的卷积神经网络(CNN)或递归神经网络(RNN)不同,transformer采用自注意力机制(Self-Attention),使得模型能够关注序列中的任意位置,从而捕捉全局特征。将transformer应用于BCI的解码具有以下优势:
(1)自注意力机制捕捉时空特征:EEG信号不仅具有时间维度上的动态特征,也存在不同电极位置的空间关联。transformer可以在全局范围内提取EEG信号的时空特征,使模型更深入地理解脑信号的内在结构。
(2)减少手工特征工程的依赖:传统BCI系统依赖手工特征提取,而transformer可以通过自动学习实现特征提取,增强了模型的适应性,减少了对领域知识的依赖。
(3)提高解码的泛化能力:transformer的多层结构和自注意力机制使其在处理不同个体和任务时具有更强的泛化性,这一特点对BCI系统的普适性具有重要意义。
图1:不同对照组低复杂性和高复杂性任务的可视化神经活动
03.第3节 基于transformer的BCI信号采集与处理流程
在基于transformer的BCI系统中,EEG信号的处理流程通常包括信号采集、预处理、特征提取和分类解码。
1. 信号采集
信号采集是BCI的首要步骤,主要依赖非侵入式的EEG电极头戴设备,将用户大脑活动的电信号记录下来。为了确保信号质量,采集过程通常在特定环境中进行,避免电磁干扰。EEG信号具有较高的时间分辨率,能够实时反映用户的脑活动变化,为后续解码提供了丰富的数据源。
图2:根据Scopus搜索结果(包括文章、会议、书籍等)对年度研究成果进行比较
2.信号预处理
EEG信号中常包含大量噪声,预处理步骤旨在去除这些伪影,使信号更加清晰稳定。典型的预处理方法包括带通滤波(去除高频和低频噪声)、独立成分分析(ICA)(分离不同信号成分)以及通道均值参考(减少通道间的共通噪声)。
图3:谷歌工程师在2017年推出的第一个
transformer模型的原始架构
3.特征提取
基于transformer的BCI系统不再依赖手工设计的特征提取方法,而是通过自注意力机制自动学习EEG信号的时空特征。在这种机制下,模型可以重点关注信号中最具代表性的时空位置,提取出与特定任务(如运动想象、情绪识别等)相关的特征,为后续的分类器提供有效输入。
4.分类解码
提取的特征被送入深度学习分类器中进行解码。常用的分类方法包括卷积神经网络(CNN)、支持向量机(SVM)等。在基于transformer的模型中,分类器可以直接基于自注意力提取的全局特征进行多类别分类,从而更高效地将EEG信号转化为控制指令。
04.第4节 基于transformer的BCI在不同场景中的应用
运动想象控制:基于transformer的BCI在运动想象任务中的应用表现优异。用户通过想象特定动作(如左手握拳或右手移动)生成脑信号,transformer模型能够高效解码这一意图,实现精准的运动控制。该技术在神经康复、智能假肢控制等方面具有广阔前景。
情绪监测与调节:情绪是脑信号中的重要信息,基于transformer的BCI可以准确提取和分类情绪状态,从而为情绪监测、心理健康管理等应用提供支持。例如,通过实时监测用户的情绪状态,BCI可以帮助用户进行情绪管理,或在虚拟现实中实现情绪反馈。
辅助沟通:对于无法正常发声或运动的患者,基于transformer的BCI可以通过解码EEG信号将用户的意图转化为文字或语言,辅助其与外界沟通。该技术在渐冻症等重度神经疾病患者中的应用前景广阔。
05.第5节 基于transformer的BCI技术的未来发展方向
多模态融合:未来的BCI系统将不仅限于单一的EEG信号采集,更多的多模态数据(如肌电信号、视觉信号等)将与EEG结合,为BCI解码提供更丰富的信息源。transformer模型具备处理多模态输入的潜力,能够实现更加精确和全面的用户意图解码。
图4:研究人员提出的EEG构象构象架构,具有卷积和变压器组件
实时性和便携性:尽管transformer大幅提升了BCI解码的准确率,实时性和设备的便携性仍是未来发展的关键。未来,随着硬件性能提升和模型优化,BCI设备将变得更轻便,具备更高的实时响应能力,满足更多场景的使用需求。
个性化自适应BCI:由于每个人的脑电信号具有独特性,个性化的BCI系统将变得尤为重要。未来基于transformer的BCI有望实现自适应学习,即根据用户的实时状态自动调整模型参数,为每个用户提供最佳的解码效果。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。