vLLM+Nginx+4090打造DeepSeek-R1-32B高可用大模型集群,助力企业拥抱AI时代

今年是 DeepSeek-R1 系列模型深耕各行各业、助力企业全面拥抱 AI 变革的关键之年!同时,这也将是智能体爆发的一年!无论是哪种智能体,其背后都离不开一个稳定可靠的大模型集群作为支撑。然而,并非每个企业都拥有充裕的资金,因此,如何搭建一个既经济又可靠的大模型集群,成为了中小企业面临的重要课题。

经济实惠又强壮的选择:

DeepSeek-R1-32B(量化版) + Nginx + vLLM + 4090 GPU

为确保系统的高可用性,至少需要配置两块 4090 GPU组成高可用模型实例集群。同时,在应用端设置限流机制,当模型负载达到上限时,应用系统向用户提供友好的提示。

服务器繁忙,请稍后再试。

总体部署方案

硬件配置:

NVIDIA RTX 4090显卡2块(至少)

内存256GB

软件配置:

Docker version 27.0.3

CUDA Version: 12.4

Ubuntu 22.04

DeepSeek-R1-Distill-Qwen-32B-AWQ

Linux下vLLM的安装

实现目标:确保每个 vLLM 的 Docker 容器独占一块 4090 GPU,并配置独立端口。保证 Docker 启动时 vLLM 服务自动启动,停止 Docker 时 vLLM 服务也随之停止。

执行以下命令创建与启动Docker:

sudo docker run -dp 9990:6666 --runtime=nvidia --gpus device=0 --name DeepSeek-R1-1 -v /DeepSeek-R1-Distill-Qwen-32B-AWQ:/DeepSeek-R1-Distill-Qwen-32B-AWQ vLLM/vLLM:0.7.3

第二个Docker可以启9991端口,选择GPU的1号卡,名字DeepSeek-R1-2,具体命令大家自己写就可以。

Nginx配置

实现目标:负载所有vLLM提供的模型接口,实现模型高可用配置。

Nginx配置如下:

upstream deepseek_r1_api {`    `random;`    `server 192.168.1.10:9990 ;`    `server 192.168.1.11:9991 ;``}``   ``server {`    `listen       80 ;`    `server_name  _;`    `charset utf-8;`    `access_log  /nginx/deepseek_llm.log main;``   `    `location / {`        `proxy_pass http://deepseek_r1_api;`    `}``}

请求Base URL示例:

http://localhost/v1

请求cURL示例:

 `curl --location --request POST 'http://localhost/v1/chat/completions' \``--header 'Content-Type: application/json' \``--data-raw '{`    `"model": "deepseek-r1-32b-awq",`    `"messages": [`       `{"role": "user", "content": "请介绍北京"}`          `],`    `"temperature": 0.6,`    `"max_tokens": 4096,`    `"stream":true`  `}'`

Open WebUI远程验证

下载与安装

地址:https://github.com/open-webui/open-webui

找到“If Ollama is on your computer, use this command:”提示语,并复制命令,之所以没有选择只支持OpenAI API 的Docker,是因为你还可以通过Ollama接入模型。

注:我们采用Docker环境部署,本地环境请自行安装。

将复制的命令,在一个新的命令提示符窗口下打开。

安装完成后可以在Docker列表中看到Open WebUI的条目。

2、Open WebUI+DeepSeek-R1

Open WebUI地址:http://localhost:3000

拷贝地址在浏览器中打开,或是点击Docker Open WebUI条目中红框圈住的部分。

打开后的Open WebUI界面如下:

点击“开始使用”,完成管理员账号的创建,这里采用OpenAI API方式配置远程模型,配置完就可以进入聊天界面。

选择“管理员面板”-“外部连接”-“OpenAI API”,添加外部地址。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,用户想了解如何在外网上部署和访问VLLMDeepSeek相关的服务,特别是需要一个指南。首先,我需要先理解用户的需求。VLLM是一个高效的推理和服务库,而DeepSeek可能是他们自己开发的模型,比如DeepSeek-V3。用户可能已经在内网部署了这些服务,现在需要将它们暴露到外网,让外部用户可以访问。 接下来,我得考虑部署的基本步骤。通常,部署服务到外网需要考虑几个方面:服务器准备、模型部署、网络配置、安全措施、访问方式以及监控维护。需要确保用户具备公网IP或者域名,并且服务器防火墙配置正确。可能还需要使用反向代理,比如Nginx,来处理HTTPS和负载均衡。 然后,关于VLLM的具体部署,我记得VLLM支持通过API服务来提供推理,所以用户需要安装VLLM并启动服务,指定主机和端口。可能需要调整启动参数,比如允许跨域请求,或者绑定到0.0.0.0以便外部访问。此外,如果用户有自定义的模型,比如DeepSeek-V3,可能需要加载特定的模型文件,并确保模型路径正确。 网络安全是关键部分。用户必须考虑如何防止未授权访问,可能需要使用API密钥、速率限制,以及HTTPS加密。引用中的SSRF漏洞提醒我,必须确保服务不会成为内部网络攻击的跳板,所以需要严格的输入验证和网络隔离。比如引用[1]提到SSRF漏洞可能导致数据泄露,所以这部分需要特别注意。 另外,参考引用[2]中的零信任网络访问(ZTNA)原则,建议用户实施最小权限和持续验证,这可能涉及到使用身份验证服务,比如OAuth或JWT。引用[3]提到Prometheus监控部署,所以用户可能需要集成监控工具来跟踪服务性能和资源使用情况,以便及时扩展。 关于DeepSeek的模型部署,特别是如果用户使用了类似DeepSeek-V3的模型,可能需要考虑模型的优化和推理管线的调整。引用[4]中提到的方法论,比如蒸馏推理能力到标准LLM,可能涉及到模型优化步骤,但这可能属于模型训练的范畴,部署时主要关注服务接口的暴露。 最后,测试和验证是必不可少的步骤。用户需要从外部网络测试API的访问,确保端口开放,DNS解析正确,并且证书有效。同时,监控日志和性能指标,使用类似Grafana和Prometheus的工具进行实时监控,如引用[3]所示。 总结来说,步骤大致分为环境准备、服务部署、网络配置、安全加固、测试监控。需要提醒用户注意安全风险,遵循最佳实践,比如定期更新证书、限制访问权限,以及使用防火墙规则。可能还需要考虑使用云服务提供商的负载均衡器或Kubernetes进行服务扩缩容,如引用[3]提到的Pod命名空间部署。</think>以下是在外网部署和访问VLLMDeepSeek服务的分步指南: ### 一、基础环境准备 1. **服务器配置** - 确保云服务器/物理机具备公网IP地址 - 开放所需端口(如API服务的`8000`端口) - 建议配置: ```bash sudo ufw allow 8000/tcp sudo ufw enable ``` 2. **域名与证书** - 注册域名并配置DNS解析到服务器公网IP - 通过Let's Encrypt获取SSL证书: ```bash sudo certbot certonly --nginx -d your-domain.com ``` ### 二、VLLM服务部署 1. **安装依赖** ```bash pip install vllm ``` 2. **启动API服务** ```bash python -m vllm.entrypoints.api_server \ --model deepseek-ai/deepseek-v3 \ --host 0.0.0.0 \ --port 8000 \ --trust-remote-code ``` *注意:`--host 0.0.0.0`是关键的外部访问配置参数* 3. **验证本地访问** ```bash curl http://localhost:8000/v1/models ``` ### 三、网络暴露配置(Nginx示例) ```nginx server { listen 443 ssl; server_name api.yourdomain.com; ssl_certificate /etc/letsencrypt/live/api.yourdomain.com/fullchain.pem; ssl_certificate_key /etc/letsencrypt/live/api.yourdomain.com/privkey.pem; location / { proxy_pass http://127.0.0.1:8000; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; # 启用WebSocket支持 proxy_http_version 1.1; proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade"; } # 速率限制(防止滥用) limit_req_zone $binary_remote_addr zone=api_limit:10m rate=10r/s; location ~ ^/v1/completions { limit_req zone=api_limit burst=20; proxy_pass http://127.0.0.1:8000; } } ``` ### 四、安全加固措施 1. **访问控制** - 通过Nginx配置IP白名单: ```nginx allow 192.168.1.0/24; allow 203.0.113.5; deny all; ``` 2. **认证机制** -VLLM启动时添加API密钥验证: ```bash python -m vllm.entrypoints.api_server \ --api-key "your_secret_key_123!" ``` 3. **监控集成** 参考引用[3]的Prometheus配置: ```yaml - job_name: 'vllm' static_configs: - targets: ['vllm-service:8000'] metrics_path: '/metrics' ``` ### 五、外部访问验证 1. **API测试** ```python import openai client = openai.OpenAI( base_url="https://api.yourdomain.com/v1", api_key="your_secret_key_123!" ) print(client.models.list()) ``` 2. **网络连通性检查** ```bash telnet api.yourdomain.com 443 traceroute api.yourdomain.com ``` ### 六、性能优化建议 1. **GPU资源配置** ```bash CUDA_VISIBLE_DEVICES=0,1 python -m vllm.entrypoints.api_server \ --tensor-parallel-size 2 ``` 2. **批处理优化** 在请求头中添加: ```http X-VLLM-Max-Seq-Length: 4096 X-VLLM-Max-Num-Batched-Tokens: 8192 ``` ### 关键安全提醒 - 遵循引用[1]的SSRF防护要求,严格校验输入参数中的URL地址 - 按照引用[2]的零信任原则,实施持续身份验证 - 建议部署WAF(Web应用防火墙)过滤恶意请求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值