今年是 DeepSeek-R1 系列模型深耕各行各业、助力企业全面拥抱 AI 变革的关键之年!同时,这也将是智能体爆发的一年!无论是哪种智能体,其背后都离不开一个稳定可靠的大模型集群作为支撑。然而,并非每个企业都拥有充裕的资金,因此,如何搭建一个既经济又可靠的大模型集群,成为了中小企业面临的重要课题。
经济实惠又强壮的选择:
DeepSeek-R1-32B(量化版) + Nginx + vLLM + 4090 GPU
为确保系统的高可用性,至少需要配置两块 4090 GPU组成高可用模型实例集群。同时,在应用端设置限流机制,当模型负载达到上限时,应用系统向用户提供友好的提示。
服务器繁忙,请稍后再试。
总体部署方案
硬件配置:
NVIDIA RTX 4090显卡2块(至少)
内存256GB
软件配置:
Docker version 27.0.3
CUDA Version: 12.4
Ubuntu 22.04
DeepSeek-R1-Distill-Qwen-32B-AWQ
Linux下vLLM的安装
实现目标:确保每个 vLLM 的 Docker 容器独占一块 4090 GPU,并配置独立端口。保证 Docker 启动时 vLLM 服务自动启动,停止 Docker 时 vLLM 服务也随之停止。
执行以下命令创建与启动Docker:
sudo docker run -dp 9990:6666 --runtime=nvidia --gpus device=0 --name DeepSeek-R1-1 -v /DeepSeek-R1-Distill-Qwen-32B-AWQ:/DeepSeek-R1-Distill-Qwen-32B-AWQ vLLM/vLLM:0.7.3
第二个Docker可以启9991端口,选择GPU的1号卡,名字DeepSeek-R1-2,具体命令大家自己写就可以。
Nginx配置
实现目标:负载所有vLLM提供的模型接口,实现模型高可用配置。
Nginx配置如下:
upstream deepseek_r1_api {` `random;` `server 192.168.1.10:9990 ;` `server 192.168.1.11:9991 ;``}`` ``server {` `listen 80 ;` `server_name _;` `charset utf-8;` `access_log /nginx/deepseek_llm.log main;`` ` `location / {` `proxy_pass http://deepseek_r1_api;` `}``}
请求Base URL示例:
http://localhost/v1
请求cURL示例:
`curl --location --request POST 'http://localhost/v1/chat/completions' \``--header 'Content-Type: application/json' \``--data-raw '{` `"model": "deepseek-r1-32b-awq",` `"messages": [` `{"role": "user", "content": "请介绍北京"}` `],` `"temperature": 0.6,` `"max_tokens": 4096,` `"stream":true` `}'`
Open WebUI远程验证
下载与安装
地址:https://github.com/open-webui/open-webui
找到“If Ollama is on your computer, use this command:”提示语,并复制命令,之所以没有选择只支持OpenAI API 的Docker,是因为你还可以通过Ollama接入模型。
注:我们采用Docker环境部署,本地环境请自行安装。
将复制的命令,在一个新的命令提示符窗口下打开。
安装完成后可以在Docker列表中看到Open WebUI的条目。
2、Open WebUI+DeepSeek-R1
Open WebUI地址:http://localhost:3000
拷贝地址在浏览器中打开,或是点击Docker Open WebUI条目中红框圈住的部分。
打开后的Open WebUI界面如下:
点击“开始使用”,完成管理员账号的创建,这里采用OpenAI API方式配置远程模型,配置完就可以进入聊天界面。
选择“管理员面板”-“外部连接”-“OpenAI API”,添加外部地址。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。