今年过年期间,Deepseek横空出世,推理功能非常强大,而且开源,最近特别流行用Deepseek建立个人知识库。我们在电脑里储存了很多专业资料,但是自己没时间去整理,如果可以让AI去“阅读”这些素材,就可以为自己输出基于这些资料的回答。
方法有很多,但是有些方法对小白不太友好,例如Cherry Studio + DeepSeek API,AnythingLLM + DeepSeek本地模型等。
很多事情,多一个环节或者步骤,就会劝退很多人。
对我们普通用户来说,更多的需求还是希望简化流程,更方面地使用AI。
今天,我依然推荐大家使用Get笔记自带的知识库功能,来达成这一目标。除了简单方便以外,还有以下优势:
1.Get笔记已经接入Deepseek R1大模型,可以直接在Get笔记网页端或者App端提问,回答的内容可以一键保持为笔记,加入知识库,不需要自己再复制、保存到Word文档。
你可以就某个领域,持续向AI提问,它的回答内容,都可以成为你的知识库内容。
(Get笔记的网页很好记:www.biji.com)
2.目前个人用户可以新建3个知识库(会员是10个知识库)。从今天的网页端来看,每个知识库的容量是10GB,足够一般用户使用了。
PS:之前我用腾讯的ima,知识库只有2GB,当然ima也有自己的优势,例如除了Deepseek之外,还可以用腾讯的混元大模型,可以从公众号搜索合适的内容来回答你的问题等等。
3.知识库可以设置私密或者共享,可以自己独立使用,也方便分享给自己的朋友。
在Get笔记,有“罗振宇学习笔记”等官方共享知识库,如果有什么问题,还可以基于这个知识库进行专门提问。
据说,未来Get笔记还可以基于得到App的所有内容进行AI回答,那就更好了。
4.Get笔记可以导入你在得到App、微信读书App、flomo(浮墨)笔记App里的资料,把过往积累的文字资料统一管理。
5.Get笔记非常适合文字创作者,用它录音,说完就自动通过AI帮你把口语化的表达转化为书面化的语言,自动处理掉错别字、表达不通顺的地方,节约了大量的时间。
自己的原创笔记,还可以直接加入知识库。这是我目前最喜欢的功能。
例如,我们点击Get笔记的“问一问”界面:
在搜索框输入:“如何用Deepseek 建立个人知识库?请推荐适合普通人的方法或者工具。”
得到的回答结果如下:
……
上图右下角有“保存为笔记”的字样,你在搜索自己的问题时,可以一键保持AI的回答为笔记内容。
对普通用户而言,最重要的是先把AI用起来,用着用着,你才知道自己想要什么,然后再去找到最适合自己任务所需的工具。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。