医疗行业DeepSeek模型适配与RAG和微调技术应用

在医疗场景中,DeepSeek大语言模型在临床诊断、疾病预测、治疗方案推荐等方面展现出巨大的应用潜力,然而仍存在不可忽视的局限性,如医学知识的准确性和专业性不足。基座模型选择、检索增强生成(Retrieval-Augmented Generation,RAG)和微调(Fine-tuning)是提升医疗大模型性能的关键技术手段。

本文探讨如何根据不同需求选择不同版本作为基座模型,并解析RAG与微调的技术原理、应用场景和工作重点。
在这里插入图片描述

DeepSeek应用模型适配

医疗大模型的应用中,基座模型选择至关重要。基座模型为后续的RAG和微调提供了基础能力,其性能、效率和适应性直接影响最终模型的表现。DeepSeek的不同版本(如DeepSeek-V3、DeepSeek-R1、各种参数蒸馏量化版),在性能、效率和应用场景上各有优势,开发者可以根据具体需求选择合适的版本作为基座模型。

医疗行业选择模型时,数据隐私至关重要,建议考虑本地化部署的版本,以确保数据不离开医院内部。如果硬件资源有限,可以选择量化版或小参数量的蒸馏版(如7B)。这些版本对硬件要求较低,同时也能满足基本的医疗AI需求。

以下是推荐模型选择方向:临床决策支持,满血版(671B)或蒸馏版(32B、70B);医学影像分析,DeepSeek多模态版本Janus;电子病历生成,蒸馏版(7B、14B)。

在选择基座模型后,RAG(检索增强生成)和微调(Fine-tuning)成为提升医疗大模型应用性能的重要技术手段。

RAG(检索增强生成)的技术原理与应用场景

RAG是结合检索(Retrieval)和生成(Generation)的技术,核心思想是在模型生成回答之前,先从外部知识库中检索相关信息,以此增强生成内容的准确性和可靠性。当用户提出问题时,RAG模型首先通过检索模块从知识库中提取与问题相关的上下文信息,然后将这些信息作为输入传递给生成模块,生成最终的回答。

1.医院应用工作重点

(1)知识库构建。构建高质量医学知识库是RAG的关键。知识库可以包括医学文献、临床指南、病历数据等。例如,MedGraphRAG通过构建基于图的医学知识库,提高了模型可解释性和可靠性。

(2)检索模块优化。检索模块的效率和准确性直接影响RAG的性能。需要优化检索算法,确保能够快速准确地提取相关信息。

(3)上下文融合。将检索到的信息与模型的生成过程有效融合,是提高生成质量的关键。需要设计合理的上下文融合机制,确保生成内容的连贯性和准确性。

2.应用场景

(1)临床决策支持:RAG通过整合最新临床信息,提升诊断和治疗技巧。

(2)医学研究:RAG能够简化临床试验的受试者筛选,减少时间和成本。

(3)虚拟护理:RAG能够实时检索医疗知识库,为患者提供准确、可靠的回答。

微调(Fine-tuning)技术原理与应用场景

微调是在预训练模型的基础上,针对特定任务或数据集进行再训练的过程。通过调整模型的参数,微调能够使模型更好地适应特定领域的数据分布和任务需求。例如,在医疗领域,微调可以使用医学文献、临床报告或专家标注的数据,使模型更深入地理解和生成医学术语。

1.医院应用工作重点:

(1)行业训练数据。高质量的训练数据是微调成功关键。需要收集和标注大量的医学数据,如临床报告、诊断记录和医学文献。

(2)微调方法选择。根据任务需求选择合适的微调方法,如指令微调(IFT)、监督微调(SFT)或持续预训练(CPT)。不同的方法对资源和性能有不同的影响。

(3)参数优化。微调过程中需要优化模型的参数,如学习率、批次大小和训练轮数。同时,可以使用LoRA(Low-Rank Adaptation)等技术,减少显存占用并提高训练速度。

2.应用场景:
(1)辅助诊断:微调后的模型能够准确识别病历中的关键信息并给出专业诊断建议。

(2)影像设备辅助:通过微调技术,模型可以学习识别特定疾病的图像特征,提高诊断准确性。

(3)健康管理:微调后的模型能够为患者提供个性化健康管理建议。

结语

在医疗大模型的应用中,基座模型的选择、RAG和微调是提升模型性能的关键环节。应用者可以根据需求选择DeepSeek不同版本作为基座模型,以实现资源优化和任务适配。

作为提升模型性能的重要技术手段,RAG和微调各有其独特优势和应用场景。RAG通过检索外部知识库增强模型的生成能力,适合多任务和知识更新频繁的场景;微调则通过优化模型参数使其更适应特定任务需求,适合对专业性和任务准确性要求较高的场景。

在实际应用中,医院可以根据具体需求灵活选择和组合这些技术,推动医疗大模型的临床医疗科研应用实践。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值