盘点6个开源AI Memory项目,RAG≠记忆

img

RAG 与 AI Memory 不同,AI 智能体需要长期记忆来维持上下文并持续学习。以下是 6 个 100% 开源的 AI 智能体记忆的框架:

1. Graphiti 为 AI 智能体构建具有时间感知的知识图谱,这些图谱随着时间、演变的关系和上下文而变化。

github.com/getzep/graphiti

img

2. Letta 是一个开源框架,用于构建具有高级推理能力和透明长期记忆的有状态 AI 智能体。 Letta 框架是白盒的,与模型无关。它还允许你在服务器中以可视化方式测试、调试和观察智能体。

github.com/letta-ai/letta

img

3. Mem0 是一个智能记忆层,供 AI 智能体积极地从与用户的互动中学习并适应。它结合了 LLM 与向量存储,LLM 处理来自对话的关键信息,而向量存储则进行语义搜索和记忆检索。

github.com/mem0ai/mem0

img

4. Memary 赋予 AI 智能体类似人类的记忆能力。在知识图谱中跟踪实体知识、偏好和聊天历史记录,该图谱会在智能体与用户交互时自动更新。

github.com/kingjulio8238/Memary

img

5. Cognee 是一个 Python 库,它将知识图谱和 RAG 结合在一起,为 AI 智能体和应用程序构建不断发展的语义记忆。它使用动态知识图谱来维护不同信息片段之间的关系。

github.com/topoteretes/cognee

img

6. Memobase 是一个基于用户配置文件的记忆系统,旨在为您的生成式 AI 应用来长期用户记忆,并且可以同步进化。它适合用在虚拟角色、教育工具或者个性化助手等构建场景。

github.com/memodb-io/memobase

img

AI 智能体记忆的工作原理

一般来说,智能体的记忆是通过传递给 LLM 的 prompt 中的上下文提供的,它可以帮助智能体更好地规划和响应过去发生的互动或无法立即获得的数据。

img

可以将记忆分为 4 种类型:

𝟭. 情景记忆:这种类型的记忆包含智能体过去的交互和行为。在执行一个动作后,控制智能体的应用程序会将该动作存储在某种持久存储中,以便在需要时可以检索。一个很好的例子是使用向量数据库来存储交互的语义意义。

𝟮. 语义记忆:智能体可以获得的任何外部信息以及智能体应具备的关于自身的知识。可以将其视为类似于 RAG 应用程序中使用的上下文。它可以是智能体专有的内部知识,或者是隔离互联网规模数据的一部分以获得更准确答案的基础上下文。

𝟯. 程序性记忆:这是系统性的信息,例如系统提示的结构、可用工具、保护措施等。通常会存储在 Git、提示和工具注册表中。

𝟰. 有些时候,智能体会从长期记忆中提取信息,并在当前任务需要时,将其存储在本地。

𝟱. 从长期记忆中提取或者存储在本地记忆中的所有信息都称为短期记忆或工作记忆。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 关于Ollama和QAnything的技术概述 #### QAnything技术背景 在当前的信息时代,企业和个人都面临信息过载的挑战。为了应对这种局面,有道推出的QAnything引擎利用其基于RAG(Retrieval-Augmented Generation)技术的能力,为企业和个人提供了一种高效的解决方案来处理海量数据中的信息检索需求[^1]。 #### QAnything的功能特点 QAnything是一个专注于支持多种格式文件或数据库的本地知识库问答系统。它的一个显著特点是可以在离线环境下安装并使用,这使得对于那些需要保护敏感数据的企业来说尤其重要[^2]。 #### 模型选择考量 尽管智谱AI的GLM系列模型功能强大,但由于其与Ollama平台缺乏兼容性以及缺少GGUF格式的支持,因此未能成为首选方案。幸运的是,在这样的背景下,阿里巴巴通义千问(Qwen)系列模型因其开源特性而成为了替代选项之一[^3]。 #### 显卡适配问题及其解决方法 当尝试运行某些依赖GPU加速的应用程序时,如果遇到类似于“omiteatures贶.scrollHeight…”之类的乱码输出,则可能是由于所使用的显卡硬件不满足最低要求所致。具体而言,像NVIDIA V100这类较老型号可能无法充分支持最新的深度学习框架优化版本;建议改用更新一代的产品如RTX 3080, RTX 3090, RTX 4080或者RTX 4090,并确保设备具备至少16GB以上的显存容量以保障正常运作[^4]。 以下是针对上述情况调整环境配置的一段Python脚本示例: ```python import torch def check_gpu_compatibility(): if not torch.cuda.is_available(): print("CUDA is not available.") return False device = torch.device('cuda') gpu_name = torch.cuda.get_device_name(device) supported_gpus = ['GeForce RTX 3080', 'GeForce RTX 3090', 'GeForce RTX 4080', 'GeForce RTX 4090'] min_memory_gb = 16 memory_in_mb = torch.cuda.get_device_properties(0).total_memory / (1024 ** 2) memory_in_gb = memory_in_mb / 1024 if any(supported_model in gpu_name for supported_model in supported_gpus) and memory_in_gb >= min_memory_gb: print(f"Your GPU {gpu_name} meets the requirements with {memory_in_gb:.2f} GB of memory.") return True else: print(f"Unsupported or insufficient GPU detected: {gpu_name}, Memory: {memory_in_gb:.2f} GB") return False if __name__ == "__main__": compatible = check_gpu_compatibility() ``` 此代码片段可以帮助检测用户的计算环境中是否存在符合条件的图形处理器单元(GPU),从而提前规避潜在错误发生的风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值