基于深度学习cnn的暗光增强的夜间车辆识别系统设计与实现

基于暗光增强的夜间车辆识别系统设计与实现

一、项目概述

针对夜间弱光环境下车辆目标检测存在的照明不均、强光干扰等问题,提出融合光照分量分离技术与多模型增强策略的解决方案。系统包含三个核心模块:

  1. 强光分离模块(主要处理车灯散射光)
  2. 多模型暗光增强模块
  3. 多模型目标检测模块
    在这里插入图片描述

二、技术路线

1. 强光分离技术

• 采用Retinex理论分解光照分量
• 基于DehazeNet改进的光照估计网络
• 车灯区域自适应阈值分割算法

2. 暗光增强方法

模型类型适用场景特点
LOL_v1默认夜间模式轻量级暗光恢复
FiveK多光照条件复杂光照场景适应性
SMID单色图像增强低照度细节提升

在这里插入图片描述

3. 目标检测架构

• 双阶段检测框架
• 支持Yolov8系列模型
• 动态权重融合机制

三、实验环境配置

硬件要求

• GPU显存≥16GB
• CUDA 11.3及以上版本

软件环境

Python 3.7.12
PyTorch 1.11.0+cu113
TorchVision 0.12.0+cu113
OpenCV 4.6.0
gcc 9.4.0

依赖管理

# 创建虚拟环境(推荐conda)
conda create -n Retinexformer python=3.7
conda activate Retinexformer

# 安装核心依赖
conda install pytorch=1.11 torchvision cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt

# 镜像源配置(可选)
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

四、系统实现

目录结构

├── basicsr                # 基础算法模块
├── ClearLightEffects      # 光照处理核心代码
│   ├── datasets.py         # 数据集处理
│   ├── ENHANCENET.py       # 增强网络定义
│   └── utils.py            # 工具函数库
├── Enhancement            # 增强模型测试
├── input                  # 测试输入数据
├── object_weights          # 目标检测模型库
├── Options                # 配置文件
├── runs                   # 实验结果存储
└── vue-ui                 # 前端界面
    └── src                  # Vue.js源码

在这里插入图片描述

运行流程

  1. 后端服务启动:
python run.py
  1. 前端界面访问:
cd vue-ui
npm install
npm run dev

五、关键实验结果

1. 光照分离效果对比

方法车灯区域分离度背景细节保留率
Otsu阈值法76.2%68.5%
DehazeNet89.1%72.3%
本文方法94.7%85.4%

2. 暗光增强效果

在这里插入图片描述

3. 目标检测精度

数据集YOLOv8n准确率本文模型准确率
BDD-Day82.1%89.3%
BDD-Night67.4%83.7%

六、创新点总结

  1. 提出基于双分支注意力机制的光照分量分离网络
  2. 设计模型动态选择策略(光照强度自适应)
  3. 开发集成式可视化测试平台(支持实时参数调整)
  4. 建立完整的模型训练-验证-测试流程(包含10种预训练模型)

七、注意事项

  1. 模型权重文件需从指定链接下载
  2. 不同环境部署需重新验证依赖兼容性
  3. 目标检测模型命名规则:
    <数据集缩写><光照类型><训练规模><epoch数><微调标识>
    示例:bddnight40k20c.pt 表示BDD夜间数据集训练的40k样本、20epoch微调模型
    

八、拓展方向

  1. 引入时序信息进行视频增强
  2. 开发轻量化边缘计算版本
  3. 探索多模态融合检测策略
  4. 构建跨场景迁移学习框架

(注:具体实现代码、详细实验数据及模型参数请参照项目仓库)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值