基于暗通道先验的单幅图像去雾
代码
def DarkChannel(im,sz):
b,g,r = cv2.split(im)
dc = cv2.min(cv2.min(r,g),b);
kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(sz,sz))
dark = cv2.erode(dc,kernel)
return dark
def AtmLight(im,dark):
[h,w] = im.shape[:2]
imsz = h*w
numpx = int(max(math.floor(imsz/1000),1))
darkvec = dark.reshape(imsz);
imvec = im.reshape(imsz,3);
indices = darkvec.argsort();
indices = indices[imsz-numpx::]
atmsum = np.zeros([1,3])
for ind in range(1,numpx):
atmsum = atmsum + imvec[indices[ind]]
A = atmsum / numpx;
return A
引言
在许多计算机视觉和图像处理应用中,如自动驾驶、监控系统和户外摄影等,图像中的雾气常常会对图像质量产生严重影响,导致图像对比度降低、色彩失真以及细节丢失等问题。因此,如何有效地去除图像中的雾气,恢复清晰的图像,成为了图像处理领域的一个重要研究课题。本程序旨在利用暗通道先验原理实现单幅图像的去雾功能。
暗通道先验是一种基于统计的图像先验知识,它指出在大多数无雾的室外场景中,至少有一个颜色通道(红、绿或蓝)的像素值非常低,接近于零。基于这一先验知识,可以通过估计图像的暗通道来推断大气光幕和透射率,进而恢复出无雾的清晰图像。
编译依赖
为了成功编译和运行本程序,需要确保系统中已经安装了以下依赖库:
OpenCV
OpenCV是一个广泛使用的计算机视觉库,提供了丰富的图像处理和分析功能。在本程序中,OpenCV主要用于读取、显示和处理图像数据。它提供了高效的图像操作接口和各种图像处理算法,方便我们对图像进行预处理和后处理操作。通过OpenCV,我们可以方便地读取输入的有雾图像,并将去雾后的图像显示出来。
Numpy
Numpy是Python中用于科学计算的基础库,提供了高效的多维数组对象和各种数学运算函数。在本程序中,Numpy主要用于处理图像数据的数组表示和进行一些数值计算。例如,在计算暗通道、透射率等过程中,需要使用Numpy的数组运算功能来提高计算效率。
示例
程序中还提供了一些示例,展示了如何使用该程序对不同场景下的有雾图像进行去雾处理。通过这些示例,用户可以直观地了解暗通道先验在单幅图像去雾中的效果和应用。