基于YOLOv8和Streamlit的交通事故实时检测系统

基于YOLOv8和Streamlit的交通事故实时检测系统

项目概述

🚗📹 本项目采用YOLOv8(You Only Look Once)目标检测模型结合Streamlit框架,Accident-Detection-yolov8-streamlit实现视频中的交通事故实时检测功能。该应用提供用户友好的界面,支持视频上传、目标检测及结果可视化展示。
在这里插入图片描述

核心功能

📹 实时目标检测:运用YOLOv8模型实时检测并追踪视频中的目标物体

🎥 视频分析:支持上传视频文件及RTSP实时流媒体分析

🖼️ 快照捕捉:自动保存检测到事故的关键帧图像用于后续分析

📊 结果可视化:展示带有时间戳和视频详细信息的检测结果

环境要求

  • Python 3.x
  • 必要Python包:streamlit、opencv-python、tinydb、ultralytics、python-dotenv、secure-smtplib

使用演示

首页界面
[此处插入首页截图]

结果展示页
[此处插入结果页截图]

使用说明

  1. 安装所需Python依赖包:
pip install -r requirements.txt
  1. 运行Streamlit应用:
streamlit run app.py
  1. 打开浏览器访问显示的URL地址
    在这里插入图片描述

项目目录结构

📁 app.py                  # 主应用文件
📁 database/               # 检测结果存储目录(JSON格式)
  📄 data.json             # 包含检测结果的JSON文件
📁 demo/                   # 演示素材目录
  🖼️ Accident-Detection (1).png  # 演示图片1
  🖼️ Accident-Detection.png      # 演示图片2
📁 requirements.txt        # 项目依赖清单文件
📁 snapshots/              # 检测关键帧快照存储目录
📁 utils/                  # 工具函数目录
  📁 images/               # 测试图片目录
    🖼️ test_detat.jpg      # 测试图片1
    🖼️ test.jpg           # 测试图片2
  📄 helper.py             # 辅助函数模块
  📄 notifiction.py        # 通知功能模块
  📄 settings.py           # 配置参数模块
📁 weights/                # 预训练模型权重目录

技术亮点

  1. 实时处理引擎:采用YOLOv8最新目标检测算法,平衡检测精度与处理速度
  2. 智能告警系统:通过分析目标运动轨迹和交互状态识别潜在事故
  3. 轻量级数据库:使用TinyDB实现检测结果的本地化存储与管理
  4. 模块化设计:各功能组件解耦,便于功能扩展和维护

应用场景

  • 交通监控中心实时事故预警
  • 智慧城市道路安全监测
  • 车载行车记录仪事故自动记录
  • 停车场安全管理
  • 交通流量分析与事故黑点识别

扩展方向

  1. 增加多摄像头同步监控功能
  2. 集成短信/邮件报警通知系统
  3. 开发事故严重程度评估模块
  4. 支持云端存储和数据分析
  5. 添加驾驶员行为分析功能

注:实际部署时建议根据具体场景调整检测参数,并确保硬件配置满足实时处理要求。对于关键任务场景,建议采用GPU加速提升处理性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值