综述阅读:人工智能在肺癌影像基因组学方面的研究与进展

        肺癌是世界范围内导致癌症死亡的主要原因。70%的肺癌诊断是在晚期局部或转移性疾病出现症状后进行的,诊断后的 5 年生存率约为 16%。只有当肺癌患者被确诊时仍是局部症状,生存率才会达到 50%以上。不幸的是,肺癌患者的疾病进展和对治疗的反应差异很大,只有 15%的肺癌在早期阶段被诊断出来。因此,准确的诊断与预后对于每个肺癌患者的治疗选择和规划至关重要。

        本文描述了人工智能方法在肺癌影像基因组学领域用于诊断与预后的相关研究进展。首先介绍了人工智能在影像基因组学中的角色与应用,以及人工智能技术在肺癌影像基因组学的主要研究方向,分别从肺癌基因表型识别影像基因双向相关分析预后预测三个方面进行了综述,并且评估了放射组学与深度学习算法在每个问题中的优缺点以及面临的问题和挑战。

研究思路:

肺癌基因表型鉴别的应用中,分别从放射组学方法和深度学习技术的角度总结与梳理了肺癌中 EGFR、KRAS 基因识别的应用现状,并且简单分析了后续可继续进行的研究。

肺癌智能诊断中影像与基因的相关性分析方面,分别从统计学方法以及深度学习两个角度进行分析。虽然取得了一定的成果,但大多研究都是统计学意义上的一些相关性,没有给人呈现直观的视觉效果,而基于深度学习的影像基因双向相关性则可以实现,但仍然处于尝试阶段,需要进一步研究探讨相关技术及方案。

肺癌预后预测方面,简单总结了肺癌基于影像和影像基因进行生存复发预测以及疗效评估预测两个方面的工作,而基于人工智能算法的疗效反应评估研究内容还较少,较分散,需要进一步挖掘。

影像基因组学与人工智能

        影像基因组学(又称放射基因组学)是一门将医学成像技术与基因组学技术相结合的交叉学科,是一种将成像特征与基因组数据相关联的高通量研究方法。它不仅从图像数据中提取反应诊断的定量图像表型特征,而且从生物学数据中提取基因型特征,进而分析肿瘤的影像学特征与分子表型之间的关系影像。

        影像基因组学被应用于疾病的成像诊断基因表型鉴别预后预测疗效评估等。其方法主要分为以下 4 个步骤:

        ①图像采集和处理;

        ②感兴趣区域(ROI)分割;

        ③特征提取和量化;

        ④构建预测和预后模型。

        在肺癌的诊断和治疗过程中,产生了大量丰富的具有不同数据类型的数据,包括文本、图像、生命体征数据、基因组数据等。

一、影像基因智能方法在肺癌基因表型方面的鉴别

        基因表型在肺癌的治疗决策中起着核心作用,基于影像预测肺癌中2个基本致病基因表皮生长因子受体(EGFR)和鼠类肉瘤病毒(KRAS)的突变状态是一种无创、成本较低的方法,具有靶向治疗的价值,检测肺癌患者的多种基因改变是决定靶向治疗适用性的关键。
        肿瘤的特征是体细胞突变,例如特定的基因突变,可以影响参与肿瘤发展和进展的生物过程,最终反映在肿瘤表型上。EGFR 和 KRAS 的突变状态对于 NSCLC 患者的靶向治疗至关重要,因为它们是靶向治疗前了解肺癌致病的关键基因。

        利用传统机器学习方法来识别EGFR 突变状态,虽然上述放射组学、机器学习和统计方法已经成功地识别了肺癌患者基因突变,但它们需要复杂和严格的程序,需要经验丰富的成像医生的全面指导,从检测分割到特征提取和特征选择,非常耗时耗力,且结果是不可重复的。                              目前证实了深度学习在预测肺腺癌中 EGFR 突变状态方面的潜力。这些方法主要采用多层卷积神经的方法使用 CT图像作为输入,并自动提取高级特征表示,用于 EGFR 突变状态预测。

        将人工智能和放射组学应用于肺癌基因突变识别任务的进一步研究正在进行中,临床上迫切需求智能诊断技术加以辅助。表 1 详细描述了基于非侵入图像 处理在肺癌基因突变状态识别中的应用现状,研究图像类型主要包括肺癌 CT、PET 图像等,预测任务包括识别 EGFR、KRAS 基因突变等。研究方法主要包括放射组学方法(朴素贝叶斯分类器、k-最近邻、随机森林、支持向量机、决策树、Logistic 回归等)以及深度神经网络(CNN、ResNet、LSTM、DenseNet、Inception V-等)。评价指标主要采用准确率(ACC)、精确度(Pre)、敏感性(SE)、特异性(SP)、AUC 值、召回率(Recall)、F1-score、马修斯相关系数(MCC) 等。

        虽然利用放射组学方法和深度学习技术已经逐步实现了基于影像预测肺癌基因的突变状态,但是放射组学方法要依靠有经验医生的标注及分割,进而手工提取特征,耗时耗力。深度学习技术虽然避免了手工特征的提取,实现了端到端训练,但是提取的深度特征具有不可解释性。大多这些方法只考虑了单任务预测基 因突变,多基因之间的关联性是否影响预测结果还不清楚,需要通过实验进一步验证。在后续的研究中,可以侧重基于多类型影像数据、多基因、多任务(如重 建+预测、自动分割+预测等)等去鉴别肺癌基因的表型,并考虑增强模型的可 解释性与泛化性能。

        董云云基于非小细胞肺癌 (NSCLC)CT 图像提出了一种多通道、多任务的端到端深度学习(MMDL)模型,用于同时预测 EGFR 和 KRAS 突变状态。该模型首先将每个三维肺结节分解为 9 个视图。然后,对每个视图使用预先训练的 inception-attention-resnet 模型来学习结节的特征,再通过结合 9 个 inception-attention-resnet 模型进行自适应加 权训练来预测肺结节的基因突变类型。

二、影像与基因在肺癌智能诊断方面的相关性分析

        临床常规影像学检查通常是捕捉肿瘤行为最直接和最好的方法,有可能帮助提供疗程中整个肿瘤和所有肿瘤的更全面的视图。基因测序技术的进步使我们能够识别分子特征,这些特征有助于监测肿瘤生长,以指导疾病的预防和治疗。然而,由于肿瘤的异质性,这些技术受到活检的局限基因测序的价格以及时间因素导致不少患者丧失了靶向药物治疗的最佳时机。因此,图像特征与基因组数据相结合的方法在提供更好的个性化决策支持方面具有巨大的前景。

        肿瘤异质性(多样性)是指肿瘤在生长过程中,经过多次分裂增殖,其子细胞呈现出分子生物学或基因方面的改变,从而使肿瘤的生长速度、侵袭能力、对药物的敏感性、预后等各方面产生差异。它是恶性肿瘤的特征之一。

        活检的局限是因为肿瘤具有异质性 ,对于癌细胞已经发生转移的患者而言,仅仅取某个部位的肿瘤组织,并不能反映患者的整体情况,但对所有的肿瘤组织都取样检测又不切实际;某些患者自身的情况决定了他不适合做组织活检 ;受到手术的扰动之后,有些肿瘤有加速转移的风险; 组织活检的滞后性对患者的治疗也是不利的。

        基因测序的局限性,有的疾病与遗传性因素没有关系、关系很小、或暂未发现任何关系;研究人员发现,仅仅是对肿瘤基因组测序而不将其与其他组织细胞的基因组进行对比,就有可能导致对癌症的误诊和误治。


        然而,只有少数研究整合了基因组数据和图像数据,构建了这些信息相关性的放射基因组学框架。传统上(统计学方法),连接图像特征和基因表达谱的放射基因组图谱在非侵入识别特定类型疾病的分子特性方面具有巨大的潜力。这种图谱可以分为三个独立的步骤:

1)对元基因的基因聚类,2)图像特征的提取,3)元基因与图像特征之间统计相关性的分析。

每一步都是单独执行的,并依赖于各自的度量方法,而不考虑彼此之间的相关性。

        以上研究大多是通过分析组织样本来识别医学图像特征和分子特征之间的统计学意义上的显著相关性,不能给出直观的病理情况的视觉结果。此外,具有手工制作特征的放射基因组学研究是模糊的,对临床医生没有解剖学意义,且这些特性大多是冗余的,并强烈地依赖于领域知识。随着深度学习的发展,研究者们开始考虑整体和端到端的策略去寻找影像基因间的相关性。

        Sui D 等人 (2021)提出了一个基于深度学习的放射基因组框架,构建肺肿瘤图像与基因组数据的关系,进而实现生成过程,形成一个双向框架来 表征多源医学数据。首先,采用基于 U-Net 的分割方法从原始 CT 图像中获得肿瘤区域(TR)。然后,利用自动编码器对基因条件下的图像进行编码,从不同层次的编码器中提取图像特征,将这些特征、预后数据和基因用于一系列分析实验,证明这些多源数据之间的相关性。最后,改进的 CVAE-GAN 将基因转化为相应的 TR,并给出了直观的结果。

三、影像基因智能方法在肺癌预后预测方面的研究

        大多数肺癌目前是在晚期被发现和诊断的,生存率较低。虽然早期肿瘤发现和治疗可以提高肺癌患者的生存率,但如既往研究报道,恶性肿瘤手术切除后的肺癌复发率仍在 30%-60%之间。因此,为了更有效地治疗和管理肺癌患者, 建立有效的临床标志物或预测模型对更准确地预测肿瘤手术预后至关重要。

        疾病预后是对某种疾病的了解,除了先了解其临床表现、化验及影像学、病因、病理、病情规律等方面之外,重要的是根据治疗时机和方法结合治疗操作中所发现的新情况,对疾病的近期和远期疗效、转归恢复或进展程度的评估。

1、生存复发预测

        研究人员已经探索了不同的基因组生物标志物来识别肺癌发展和生存复发预测。尽管结果很有希望,但使用基因组生物标记物仍面临多种挑战,并存在一些局限性,如具有较高的成本、仪器检测错误、主观评分的处理错误以及较低的特异性。

        在目前的临床实践中,影像学检查仍然在肺癌的检测、 诊断和预后评估中起着至关重要的作用,但是阅读和解释大量肺癌病例图像对放射科医生来说是困难的。因此,随着计算机辅助技术的快速发展,各种机器学习和深度学习方法的应用在癌症预后预测中发挥着越来越重要的作用。人们对基于从肺癌图像中计算出新的定量图像标记物预测癌症生存复发越来越感兴趣,各种预测算法正被不断探索。

        表 3 详细描述了影像智能方法在肺癌生存复发预测方面的应用, 数据类型包括 CT、PET/CT、临床数据等,研究方法主要包括放射组学方法(SVM、 RF、DT、KNN、Cox 比例风险、Logistic 回归、多层感知器等)以及深度神经网络(CNN、ResNet、DenseNet 等)。

        评价指标主要采用 ACC、AUC、SE、SP、 一致性指数(C-index)、平均绝对误差(MAE)、风险比例(HR)等。

        然而,上述技术仅使用图像信息,其预测性能是有限的。许多研究试图使用临床可接受的基因表达信息和图像相结合的方法(影像基因组学)来最大限度地提高肺癌生存复发的预测性能。一方面,研究者们利用非深度学习方法在肺癌影像基因数据的基础上开展肿瘤生存复发预测。 


2.疗效评估预测

        在肺癌诊治过程中,有效的疗效评估预测对于制定和调整临床治疗方案具有重要价值。近年来,肺癌的治疗工作取得了前所未有的进展。影像组学和影像基因组学将临床、基因以及影像大数据结合起来,对肺癌患者的分子和基因改变以及癌细胞免疫逃避机制的不断了解,为新的靶向药物、免疫治疗药物及个体化治疗(术后特异性化疗、放疗)铺平了道路。随着研究的不断深入和拓展,人工智能结合医学图像分析和数据挖掘方法的无创技术,在肺癌治疗反应评估中的潜在应用也引起了相当大的关注。

        肺癌治疗结果评估和影像学检查需要进行常规随访和肿瘤复发监测。然而,为了充分解决肺癌的异质性本质和治疗完成后可能的复发,还需要更个性化的监测。不少学者将目光置于影像组学及影像基因组学对肺癌治疗疗效反应的预测。

        放射组学试图从患者的医学图像(包括预处理和随访图像)中提取大量有价值的信息,并定量地将图像特征与诊断和治疗结果联系起来,取得了一定的研究成果。

        深度学习可以整合多个时间点的扫描图像,自动提取图像特征和识别复杂数据中的非线性关系,以改善临床结果预测。

        虽然医学影像一直能提供对疾病的个人评估,但基于影像生物标记物的人工智能算法有望准确地对患者进行分层,并为个性化医疗服务提供新的研究途径。 这种新兴的方法允许早期诊断和定制患者特定的治疗,从而在正确的时间为正确 的患者提供适当的医疗护理。表 5 详细描述了影像基因智能方法在肺癌疗效评估预测方面的应用现状,研究图像类型主要包括肺癌 CT、PET/CT 图像、临床数据等,疗效评估包括预测接受 SBRT 治疗的反应、放化疗及手术后的反应、接受 抗 PD1 免疫治疗的反应状态、TKIs 或 ICIs 治疗敏感反应等。研究方法主要包括 放射组学方法(统计学分析、SVM、DT、RF、AdaBoost、无监督聚类、LASSO 逻辑回归、Cox 比例风险回归等)以及深度神经网络(3D CNN、RNN 等)。评价指标主要采用 C-index、AUC、HR 等。从综述来看,基于人工智能算法进行 疗效评估还存在许多障碍,包括需要标准化的数据收集方法、评估标准、前瞻性 验证和报告协议等,这些在精确医学内的最大临床预期影响都需要进一步的研究。 此外,基于影像基因组学的人工智能算法在疗效评估预测方面的研究还较少,后续也可以进行尝试性的探讨研究。

总结:

        基于影像基因组学的人工智能算法在提高肺癌基因表型鉴别、预后评估和预 测治疗反应的准确性方面具有重要意义,为整个疾病过程中的患者护理提供了有 价值的信息。影像基因组学结合人工智能有很大的前景,可以通过利用基因表达 和分子谱信息来帮助理解放射性表型的生物学基础,还可能显示放射组特征、生 物途径和基因表达状态之间的相关性。同时它能帮助建立放射组生物标志物作为 基因组预后生物标志物的替代物,提高了预测模型的性能。影像基因智能算法的 研究需要更大的数据集和更准确的信息标准化,进而提供有意义的和临床适用的 结果,为精准医疗和个性化治疗策略的选择提供支持。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值