在2025年的今天,人工智能与工业自动化的深度融合正成为不可逆转的趋势。作为工业自动化的核心设备,PLC在AI技术的赋能下,正从传统的“逻辑执行者”向“智能决策者”转变。
DeepSeek作为AI技术的代表,正在推动这一变革,重塑工控领域的生产模式、技术架构以及人才需求。
一、技术层面:AI如何赋能PLC升级
1. 动态控制优化
传统PLC依赖于预设的逻辑和程序执行任务,面对复杂工况时存在明显局限。DeepSeek通过深度强化学习(DRL)算法,使PLC能够在毫秒级实时调整控制参数。
例如,西门子在钢铁连铸生产线中应用该技术,动态优化结晶器振动频率,成功将板坯裂纹率降低18%。相比传统需200小时人工调试的PID控制,AI方案仅需8小时即可完成参数整定,并持续迭代优化。
2. 预测性维护
基于振动、电流等多模态数据的分析,DeepSeek可提前72小时预测设备故障。施耐德的Modicon M580 PLC集成声学分析模型,对轴承早期磨损的识别准确率(F1-score)高达0.93。这种从“故障修复”到“健康管理”的转变,使工厂非计划停机减少30%以上。
3. 编程范式革新
AI正在改变PLC编程的方式。ABB的Ability™ Genix平台将自然语言指令转换为ST代码,使开发周期缩短45%。西门子TIA Portal AI Assistant通过程序语义分析,自动检测70%以上的逻辑冲突。
DeepSeek支持梯形图与功能块混合生成,在包装机械测试中实现100%功能覆盖率。
二、生产运营层面:AI驱动的效率提升与成本优化
1. 生产效率提升
AI赋能的PLC系统显著提升了生产效率。例如,特斯拉上海工厂利用DeepSeek驱动的视觉检测系统,将焊点质检误检率降至0.5%,效率提升5倍。在光伏组件生产线,跨设备协同使日产量提升2200件。
2. 运营成本降低
波士顿咨询研究显示,全面应用AI的PLC系统可使工厂运营成本降低22-35%。施耐德电气通过AI优化能耗预测模型,在汽车工厂实测节能12%。
3. 质量控制与故障预防
AI技术通过实时数据分析和预测性维护,大幅提升了质量控制水平。例如,西门子与Senseye合作开发AI故障库,在半导体设备上实现平均72小时故障预判。
三、行业发展层面:工业巨头的生态布局与未来趋势
1、西门子:数字孪生驱动的闭环体系
西门子通过MindSphere平台沉淀300+工业AI模型,在宝马沈阳工厂实现冲压线设备综合效率(OEE)提升至91.2%。
2、施耐德:能效管理新范式
施耐德的EcoStruxure平台通过Modicon M262 PLC实现能耗预测模型实时推理,在炼油厂实现催化剂寿命预测误差小于3%。
3、ABB:跨域协同创新
ABB的AC500系列PLC搭载Codian Robotics的AI视觉算法,使包装线产品切换时间缩短40%。
未来,PLC将采用混合智能架构,本地运行轻量化模型,云端持续更新知识库。自主进化系统通过在线学习实现控制策略持续优化,类似AlphaGo Zero的自我博弈机制。
网友评论
@网友1评论
“DeepSeek再厉害,出了问题还不是得PLC工程师背锅?AI可以生成代码,但调试和维护还得靠人。所以,饭碗暂时还碎不了,但压力肯定会更大!”
@网友2评论
“AI+PLC协同,大势所趋。”
@网友3评论
“DeepSeek和PLC的结合简直是工业自动化的革命性突破!以前调试PLC程序需要花费大量时间,现在有了AI辅助,效率直接翻倍。AI不是来取代PLC的,而是让它变得更智能、更高效。这种组合绝对是未来的趋势!”
@网友4评论
“AI干活,工程师背锅!”
@网友5评论
“我刚刚试过让deepseek编了一个红绿灯的控制程序,关键是还可以把三菱的程序转换成西门子的。”
@网友6评论
“DeepSeek只是一个工具,能不能用好取决于工程师的能力工程师还要懂AI的逻辑。所以,学习新技能才是关键。”