Transformer是一种用于自然语言处理和序列生成任务的革命性深度学习模型,它采用了一种全新的架构,摒弃了传统的循环神经网络(RNN)结构。本文将详细解释Transformer背后的数学原理,并提供相应的源代码实现。
-
引言
Transformer模型最初由Vaswani等人在2017年提出,其主要目的是解决传统序列模型存在的长依赖问题。Transformer通过引入自注意力机制(self-attention)来建立序列中不同元素之间的关系,使得每个元素都能够直接参考整个序列的上下文信息,从而提高模型的建模能力。 -
自注意力机制
自注意力机制是Transformer的核心组成部分之一,它允许模型根据输入序列的不同位置和内容,自动计算出每个位置对于其他位置的重要程度,进而调整位置的表示。具体而言,自注意力机制将输入序列分别映射为查询(Query)、键(Key)和值(Value),然后通过计算查询和键之间的相似度,得到每个位置对其他位置的注意力权重。最后,根据注意力权重和值的加权组合,生成每个位置的输出表示。
以下是自注意力机制的示例代码:
import<