目标:
`本篇文章记录我使用autoware内置功能生成rosbag中的路径点文件
内容:
- 准备工作
- 加载点云地图 PCD 文件
- 点云降采样过滤
- 设置从map到nase link的转换(ndt_matching)
- 启动[vel_pose_connect]
- 设置路径点文件保存路径
- 继续播放点云数据包
- rviz 查看路径点
正文来了:
此次生成的路径点文件来自于上一篇文章中采集的ROSBAG和点云文件。
准备工作
单独打开Autoware
roslaunch runtime_manager runtime_manager.launch
加载点云数据.bag 文件
回放点云数据
加载从 base_link 到 velodyne 雷达坐标系的 TF,加载小车模型
设置从 world 到 map 转换
这部分内容都是上一篇文章的前面几个步骤,这里就不再重复了,想了解的传送门在这里:
链接:Autoware.ai开源自动驾驶系统学习日记(二):使用Autoware建图功能对ROSBAG 进行建图
加载点云地图 PCD 文件
打开[map]页面,点击[point cloud]的[ref],选择之前建图的 3D 点云地图.pcd文件,点击[point cloud]按钮,此时下方会出现一个进度条,当进度条显示加载了 100%并出现[OK]字样时,证明点云地图加载完毕。
点云降采样过滤
打开[sensing]页面,找到[points_downsampler]下的[voxel_grid_filter]选项,设置[app]的一些参数后,勾选[voxel_grid_filter]。voxel_grid_filter是一种常见的点云下采样技术。这种方法主要用于减少点云数据的数量,以便更高效地进行后续处理。这个方法的名字来自于它的工作原理:它将3D空间划分为一系列的立方体格子,每个格子称为一个体素(voxel,这个词是由"volume"和"pixel"组合而成的)。
在voxel_grid_filter中,每个体素内的所有点被替换为它们的质心或者其他的代表值。例如,可以使用体素内所有点的平均位置作为代表值。这样,每个体素就只保留一个点,大大减少了点的数量。
voxel_grid_filter的一个主要优点是它可以大大降低数据处理的复杂性,同时尽量保留原始点云的主要结构特征。
Voxel Leaf size:体素降采样算法中的体素叶大小,室内可设置小点,室外可设置大点,我这里设置为0.03。
设置从map到nase link的转换(ndt_matching)
找到[Computing]左菜单栏下的[ndt_matching]选项,设置[app]里面的参数后(保持默认就可以了),勾选[ndt_matching]。
启动[vel_pose_connect]
找到 [Computing] 左菜单栏下的 [vel_pose_connect] ,打开 [app] 并确保选项 [Simulation_Mode] 没有被勾选,退出并勾选 [vel_pose_connect]
vel_pose_connect节点用作输出车辆的位姿和速度信息
设置路径点文件保存路径
找到 [Computing] 右菜单栏下的 [waypoint_saver] ,打开 [app] ,点击[ref]选择保存的路径,勾选上[save /current_velocity],退出并勾选[waypoint_saver]
继续播放点云数据包
点击进 [Simulaton]页面,再次点击[Pause]按钮可以继续播放数据,等待数据包回放结束便可,路径点文件会自动保存在设置好的路径下。
rviz 查看路径点
在路径点生成过程中,源码安装方式的可以点击界面右下角的[rviz] 打开rviz,此时我们可以看到 rviz 中逐渐出现一条路径: