SLAM学习笔记(二) 视觉里程计

本文是SLAM学习笔记的第二部分,重点介绍了视觉里程计的核心技术,包括特征点法中的匹配与相机运动估算,2D-2D的对极几何,3D-2D的PnP算法,以及光流法和直接法。同时讨论了实际应用中的设计框架和未来研究方向,如提高特征匹配效率和准确性。
摘要由CSDN通过智能技术生成

视觉里程计属于前端优化工作,核心包括估计相机的运动(通常用旋转矩阵R和平移矩阵t来表征)和估计特征点三维位置。常见方法包括特征点法、光流法和直接法。

特征点法

根据图像中特征点的运动,估计相机的运动。

特征点及其匹配

特征点由关键点(特征点位置)和描述子(关键点周围像素信息)组成。常用特征为ORB,它包括FAST关键点(角点,灰度值与相邻像素相差大)和BRIEF描述子(相邻像素大小关系)。常见匹配方法包括暴力匹配和快速近似最邻(FLANN)

估算相机运动

2D-2D:对极几何

已知匹配的特征点在图像中的坐标,求解相机运动时的旋转矩阵和平移矩阵。关键在于求解本质矩阵E(可用八点法,即八个点对来估计),再将E进行分解即可通过对应关系求出R,t。
在这里插入图片描述
在这里插入图片描述
也可以通过单应矩阵H(平面与平面的对应关系)来求解。当特征点共面或者发生纯旋转时,自由度会减少,这时候会同时求解E和H,选取重投影误差小的作为最后的估计值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值