赤豆几维

我要strong!!!

GNSS信号体制——载波、伪码、导航电文

关于GNSS的组成,前面一篇博文简单讲了一下。不同GNSS系统的信号结构不尽相同,简要概述一下。 卫星信号从结构上可以分为载波,伪码和数据码三个层次。伪码和数据码先调制到载波上,然后卫星将调制后到载波信号播发出去。 1.载波-频率 这些卫星导航系统所用的载波无线电信号都属于特高频(300MH...

2019-06-24 14:37:05

阅读数 55

评论数 0

GNSS基本概述——GPS,BD,GLONASS,Galileo

2019.6.11 笔者有大半年没有更新博客了,最近又重新投入了工作中,所以打算总结一下这两三年来学习的卫星导航知识,毕竟这个才是我的专业。之前惯导以及SLAM等都是自己边学习边总结的,最近打算写一下卫星导航的博客,把这几年来的积累做一个完整的概括,也方便自己温故知新。 目录 GNSS概述

2019-06-18 17:27:10

阅读数 126

评论数 0

2019届秋招导航算法岗位面试回顾

这里笔者根据这一两个月来的面试经验,写一篇导航专业技术面的回顾贴。笔者的面试过程再上一篇文章中写过,签完三方之后会发布出来。 1.简历部分 由于笔者在研究生期间主要做的是卫星导航方面的工作,包括高精度时间传递和动态定位,形变监测,偏向RTK处理算法。后期为了找工作自己学了一部分GNSS/INS...

2018-10-16 20:01:15

阅读数 944

评论数 6

北斗在轨卫星

https://www.glonass-iac.ru/en/BEIDOU/index.php 

2018-09-26 22:20:42

阅读数 151

评论数 0

C++基础回顾2——类和对象、

类和对象 数据封装是面向对象编程的一个重要特点,它防止函数直接访问类类型的内部成员。类成员的访问限制是通过在类主体内部对各个区域标记 public、private、protected 来指定的。关键字 public、private、protected 称为访问修饰符。 一个类可以有多个 pub...

2018-09-17 19:23:34

阅读数 45

评论数 0

C++基础回顾1——数据类型,变量类型、存储、运算

最近找工作没有好好准备code,结果被问了很多基础知识都不会,所以这里要来回顾一下。 大家找工作一定要提前准备啊,好好刷题。 ————————————————————————————————————————————————————————— C++ 是一种静态类型的、编译式的、通用的、大小写...

2018-09-16 15:56:57

阅读数 67

评论数 0

捷联惯导总结--初始对准,位置标定,INS姿态更新,GPS/INS组合

惯导及组合导航回顾  2018.09.16 今天和17系的同学一起把惯导的流程捋了一遍,为了加深自己的记忆,这里在前面把心得大致列出来。 我们这里只考虑捷联式惯导及松组合 首先拿到惯性传感器(加速度计和陀螺仪)需要对其进行标定,是为了求出零偏,比例因子,交轴耦合这些误差。这些误差有的虽然在...

2018-09-07 17:39:08

阅读数 8393

评论数 10

2019秋招——笔试

20180906 美团  无人驾驶算法岗位 编程题(2道题30分) 1.给定一张包含N个点,N-1条边的无向连通图,节点从1到N编号,每条边的长度均为1,假设你从1号节点出发并打算遍历所有节点,那么总路程至少是多少? 输入第一行包含一个整数N,接下来N-1行包含两个整数X和Y,,表示X节点和...

2018-09-06 21:48:58

阅读数 409

评论数 0

ROS实现消息发布器和订阅器

关于ROS的教程,官网上有很完整的介绍。 英文版http://wiki.ros.org/ROS/Tutorials 中文版http://wiki.ros.org/cn/ROS/Tutorials 但是笔者在按照教程实现的时候由于需要反复修改CMakeLists.txt以及package.xm...

2018-09-06 13:06:39

阅读数 492

评论数 0

ROS系统

ROS(Robot Operating System) 在调试SLAM程序时,数据来源有三种:传感器,数据集,bag文件。 若手里没有相应传感器,就需要用虚拟的数据来跑SLAM,其中最方便的当属利用ROS下的bag文件发布topic,然后SLAM程序就可以监视topic发出的数据,就像使用真实...

2018-09-04 11:25:40

阅读数 100

评论数 0

SLAM总结(SLAM十四讲ch14)

开源网站   SLAM未来发展趋势 一、小型化,轻量级 二、利用高性能计算设备,实现精密的三维重建和场景理解   视觉+惯导SLAM 语义地图(与深度学习结合)...

2018-09-03 21:25:29

阅读数 368

评论数 0

建图(SLAM十四讲ch13)

单目稠密重建 立体视觉 单目相机通过移动相机之后进行三角化测量像素的距离。---->移动视角的立体视觉 双目相机利用左右目的视察计算像素距离 RGB-D直接获得像素距离   单目的稠密估计(估计每个像素的深度) ——>根据视频序列估计图像深...

2018-09-03 21:24:50

阅读数 840

评论数 0

回环检测(SLAM十四讲ch12)

概述        无论在单目、双目还是RGBD中,追踪得到的位姿都是有误差的。随着路径的不断延伸,前面帧的误差会一直传递到后面去,导致最后一帧的位姿在世界坐标系里的误差有可能非常大。除了利用优化方法在局部和全局调整位姿,也可以利用回环检测(loop closure)来优化位姿。 问题的关键是...

2018-09-03 17:14:02

阅读数 890

评论数 0

后端优化2(SLAM十四讲ch11)-Pose Graph

位姿图(Pose Graph) 带有相机位姿和空间点的图优化称为BA 机器人运动轨迹越来越长,地图规模不断增长——>BA的计算效率不断下降 特征点在优化问题中占据绝大部分。而实际上,经过若干次观测之后,那些收敛的特征点,空间位置估计会收敛至一个值保持不动,而发散的外点则...

2018-09-03 14:01:51

阅读数 957

评论数 0

后端优化1(SLAM十四讲ch10)-BA

概述     视觉里程计可以给出一个短时间内的轨迹和地图,但由于不可避免的误差累积,如果时间长了这个地图是不准确的。所以我们希望构建一个尺度、规模更大的优化问题,以考虑长时间内的最优轨迹和地图。实际当中考虑到精度与性能的平衡,有许多不同的做法。      视觉里程计只有短暂的记忆,在后端优化中...

2018-09-02 21:46:05

阅读数 2490

评论数 0

视觉里程计6(SLAM十四讲ch8)-直接法

转载于https://blog.csdn.net/qq_23225073/article/details/78579458 直接法(Direct Method) 简介推导 投影方程如下 在直接法中,是求解一个优化问题,但这个优化最小化的不是重投影误差,而是测量误差(Photometr...

2018-09-01 21:02:13

阅读数 1146

评论数 2

视觉里程计5(SLAM十四讲ch8)-LK光流

特征点法——>直接法  光流(Optical Flow) 实践 采用TUM的RGB-D数据集 深度图和彩色图时间对齐 python associate.py rgb.txt depth.txt > asso...

2018-09-01 20:43:20

阅读数 454

评论数 0

视觉里程计4(SLAM十四讲ch7)-ICP

ICP 3D3D SVD方法 非线性方法 实践 使用两幅图的RGB-D图像,通过特征匹配获取两组3D点,最后利用ICP计算他们的位姿变换。 pose_estimation_3d3d #include <iostream> #...

2018-09-01 19:44:12

阅读数 247

评论数 0

SLAM基础

参考高翔博客 半闲居士 视觉SLAM中的3D空间的位置表示 在位姿转换中,通常采用射影空间的齐次坐标表示。其中一个空间点的坐标为普通的3D坐标加一个齐次分量。 ...

2018-09-01 19:23:24

阅读数 66

评论数 0

视觉里程计3(SLAM十四讲ch7)-PnP

PnP 3D2D PnP问题 PnP为 Perspective-n-Point的简称,是求解3D到2D点对的运动的方法:即给出n个3D空间点及其投影位置时,如何求解相机的位姿。 典型的PnP问题求解方式有很多种,例如P3P, 直接线性变换(DLT), EPnP(Efficient PnP),...

2018-09-01 18:54:07

阅读数 834

评论数 0

提示
确定要删除当前文章?
取消 删除