在unity3d中,用四元数来表示旋转,四元数英文名叫
Quaternion,比如 transform.rotation 就是一个四元数,其由四个部分组成
Quaternion = (xi + yj + zk + w ) = (x,y,z,w)。
Quaternion 中 (x,y,z) 跟旋转轴有关,w 与绕旋转轴旋转的角度有关,因为它们都要经过代数运算才能得出旋转轴和旋转角度。
在unity3d中,
Quaternion 的乘法操作 (operator * ) 有两种操作:
(1)
Quaternion *
Quaternion,例如 q = t * p; 这是将一个点先进行t 操作旋转,然后进行p操作旋转。
(2)Quaternion * Vector3,例如 p : Vector3, t : Quaternion , q : Quaternion; q = t * p; 这是将点p 进性t 操作旋转。
(3)我进行的是第2种操作,即对一个向量进行旋转:
首先 ,Quaternion 的基本数学方程为 : Q = cos (a/2) + i (x * sin(a/2)) + j (y * sin(a/2)) + k(z * sin(a/2)) (a 为旋转角度)
Q.w = cos (angle / 2) Q.x = axis.x * sin (angle / 2) Q.y = axis.y * sin (angle / 2) Q.z = axis.z * sin (angle / 2)
(4)我们只要有角度就可以给出四元数的四个部分值,例如我想要让点M=Vector3(o,p,q) 绕x轴顺时针旋转90度;
那么对应的
Quaternion数值就应该为:
Q : Quaternion; Q.x = 1 * sin(90度/2) = sin(45度) = 0.7071 Q.y = 0; Q.z = 0; Q.w = cos(90度/2) = cos (45度) = 0.7071
Q = (0.7071, 0 , 0 , 0.7071); m = Q * m。
将点m 绕 x轴(1,0,0) 顺时针旋转了90度。
quaternion *quaternion 表示将这些旋转叠加
vector3*quaternion 无定义
quaternion*vector3表示 vector按q旋转