介绍
- ChatGPT 等大型语言模型 (LLM) 在用自然语言讨论一般话题的能力方面令人印象深刻。
- 然而,他们在医学、金融和法律等专业领域却举步维艰。
- 这是由于缺乏真正的理解,并且注重模仿而不是智力。
大语言模型正处于炒作的顶峰。由于能够用自然语言回答和讨论一般性话题,因此被认为是“智能”的。
然而,一旦你深入研究医学、金融、法律等专业/复杂领域,就很容易观察到逻辑不一致、明显的错误和所谓的“幻觉”。简单地说,大语言模型就像一个拥有丰富词典的学生,试图假装自己已经为考试学习过并且知道所有答案,但实际上他们不知道!他们只是假装自己很聪明,因为他们掌握着大量的信息,但他们利用这些信息进行推理的能力非常有限。我甚至会更进一步说:
所谓的人工智能(AI)往往是人工智能的模仿(AII)。这在医学或金融等专业领域尤其糟糕,因为这些领域的错误可能导致人员伤亡和经济损失。
让我给你举一个我过去 10 年一直从事的领域的真实例子——金融风险。它之所以“专业”,一个好的证据是,为了理解这个话题,普通人必须了解大量的背景信息:
- 银行须遵守监管资本要求。
- 资本可以被视为吸收财务损失的缓冲。
- 持有资本的要求确保银行有足够的能力吸收损失,从而降低破产和金融危机的可能性。
- 1.中设定要求的规则基于风险比例原则:
→银行从事的业务风险越大
→风险权重越高
→资本要求越高
→损失缓冲越大
→银行稳定 - 4. 风险程度通常以银行与其有业务往来的公司的信用评级来衡量。
- 信用评级来自不同的机构并采用不同的格式。
- 为了实现评级标准化,监管机构制定了从每种评级格式到1至6范围内标准化信用质量等级(CQS)的映射规则。
- 那么,4.中确定风险权重的监管规则就是以CQS为基础的。
- 第8条中针对欧洲银行的规则是在资本要求条例(CRR)中规定的。
上述 9 条陈述中的主题看似复杂,实际上也确实如此,存在着数十种额外的复杂情况和案例,但我故意避免了它们,因为它们对于说明 AII 处理此类主题的困难甚至不是必要的。此外,复杂性并非来自任何单独的 9 条规则本身,而是来自它们的组合,有很多概念的定义基于其他几个概念,从而产生了连接概念和规则的语义网络/关系图。
现在我们只关注第 4 条中的核心概念和规则,这些概念和规则可以总结如下:评级 → CQS → 风险权重 → 资本要求。如果我们也看一下CRR 第 122 条的示例,我们可以看到一个映射表CQS → 风险权重,该表应用于公司风险暴露。
资本要求条例 (CRR 122)
这个映射规则非常简单,普通人只要有一点背景知识就可以轻松理解。许多银行专家也知道这个规则,他们中的大多数人并不记住确切的规则,而只是知道上述 9 条语句的信息,并且知道在哪里可以找到确切的映射。
人工智能
现在让我们提出一个问题,看看 AII 是否可以处理它,这是我向 ChatGPT 3.5 提出的问题:
按照 CRR,信用质量等级为 5 的企业风险敞口的风险权重是多少?
答案如下:
在资本要求条例 (CRR) 中,对企业实体的风险敞口的风险权重取决于其信用质量等级。在信用质量等级的背景下,信用质量等级 5 通常代表最高信用质量,表明违约风险非常低。
根据 CRR 概述的标准化方法,企业风险敞口根据其信用评级或信用质量等级分配风险权重。企业风险敞口的风险权重从 20% 到 150% 不等,具体取决于信用质量等级以及风险敞口是短期还是长期。
由于信用质量等级为 5 表示风险极低,因此分配给此类风险敞口的相应风险权重将是最低的。在这种情况下,对于信用质量等级为 5 的企业,风险权重可能为 20%或类似,这表明持有此类风险敞口的银行的资本要