Covariance 翻译为协方差,因此,MATLAB里面的函数cov也就是求协方差了。至于MATLAB语言里面的协方差函数cov的语法是什么样的以及怎么用的,我们稍后再说,这里首先介绍下协方差相关的基础知识点。
本文内容参考自MATLAB的帮助手册,有的时候不得不说,数据手册才是最好的教材,不仅对于MATLAB,这里提供的都是原滋原味的官方内容。例如我经常去了解一些MATLAB中的相关函数,命令等,都可以通过MATLAB的数据手册;如果我想了解一些IP核以及与之相关的知识,我可以查看Xilinx的官方数据手册,内容应有尽有,相比而言,如果我去借一些书籍去查看FPGA的IP核,不仅版本陈旧,而已也有可能翻译的有问题,让人一知半解。
废话就说到这里,下面正式开始介绍。
目录
基础知识
协方差(Covariance):
对于两个随机变量向量A和B,那二者之间的协方差定义为:
其中表示向量A的均值,
表示向量B的均值。
协方差矩阵( covariance matrix):
两个随机变量的协方差矩阵是每个变量之间成对协方差计算的矩阵,
矩阵的协方差:
对于矩阵A,其列各自是由观察组成的随机变量,协方差矩阵是每个列组合之间的成对协方差计算。 换一种说法
方差:(这是赠送的)
对于由N个标量观测组成的随机变量向量A,方差定义为
其中u是A的均值:
一些方差定义使用归一化因子N而不是N-1,可以通过将w设置为1来指定。在任何一种情况下,假设均值具有通常的归一化因子N.
(注意:w是后面要说的MATLAB里面的协方差函数的一个参数而已,在具体的MATLAB函数里面可以通过设置w来指定归一化因子!)
MATLAB中的 cov
语法格式:
下面逐个讲解:
C
= cov(A
)
C
= cov(A
)