
数学注解
FakeOccupational
这个作者很懒,什么都没留下…
展开
-
求导法则与中值定理和(特殊的两中值问题(可转化为一个中值的两中值问题))
题目:f(x)[0,1]可导,f’(x)>0,f(0)=0:证明存在两个中值st. f’(u)/f(u)=f’(v)/f(v)题目:f(x)[0,1]可导,f’(x)>0,f(0)=0:证明存在两个中值st. f’(u)/f(u)=f’(v)/f(v)(其中u+v=1)证明方法 :拉格朗日中值定理的一个证明1——构造原函数以利用罗尔定理(一中值)...原创 2021-03-31 20:16:43 · 230 阅读 · 0 评论 -
关于傅里叶级数的几个问题(形式问题,间断点处的取值,延拓与正余弦级数)
关于傅里叶级数的几个问题:f(x)的展开式的形式问题:因为要展开成三角函数或者谐波的叠加所以f(x)=∑n=0+∞(ancosx+bnsinx)eix=cosx+isinx这样才能更容易的将展开推广到复数域所以cos和sin的内层函数一样因为要展开成三角函数或者谐波的叠加所以\\ f(x)=\sum_{n=0}^{ +\infty}(a_ncosx+b_nsinx) \\ e^{ix}=cosx+isinx\\ 这样才能更容易的将展开推广到复数域 \\ 所以cos和sin的内层函数一样因为要展开成原创 2020-12-14 13:48:30 · 1833 阅读 · 0 评论 -
对数求导法
对于多个函数乘积的求导y=(x+1)a(x−1)b(2x−1)clny=aln(x+1)+b(x−1)−c(2x−1)1yy′=ax+1+bx−1−c2x−1y′=y[ax+1+bx−1−c2x−1]=(x+1)a(x−1)b(2x−1)c[ax+1+bx−1−c2x−1]y=\frac{(x+1)^a(x-1)^b}{(2x-1)^{c}}\\lny=aln(x+1)+b(x-1)-c(2x-1)\\\frac{1}{y}y'=\frac{a}{x+1}+\frac{b}{x-1}-\frac{c原创 2020-11-10 13:43:22 · 2416 阅读 · 0 评论 -
由参数方程确定的函数的一阶导数与二阶导数
高阶反函数的导数原创 2020-11-04 11:47:02 · 4054 阅读 · 0 评论 -
求过度矩阵+(二次型标准化)正交变换的过度矩阵
求过渡矩阵的方法求-个由基a, a,., a,到B, .,… β.的过渡矩阵P, 一般采用下列方法:(1)定义法.将βi,i=1,2…,n, 在基ai下的坐标逐个求出,按列写成一一个n阶矩阵,即为过渡矩阵P:函数R[x]_5旧基为B1={1,x, x2, x3,x4);新基B2={1,1+x,1+x+x2, 1+x+x2+x3,1+x+x2+x3+x4}.解(1) 记基B:中的5个多项式依次为po(x),p(x),p(x),p3(x),p(x) .则B2=B1 ×[11111;01111;0原创 2020-11-03 13:04:34 · 4733 阅读 · 0 评论 -
线性代数中满足乘法交换律的运算-行列式与迹
线性代数中满足交换律的运算-行列式与迹原创 2020-11-02 14:23:32 · 4413 阅读 · 0 评论 -
\int_{0}^{1}\frac{x^a-1}{lnx}dx含参数变量积分
∫01xa−1lnxdx=ln(a+1)\int_{0}^{1}\frac{x^a-1}{lnx}dx=ln(a+1)∫01lnxxa−1dx=ln(a+1)求导 积分 再积分F(a)=∫01xa−1lnxdxdF(a)da=∫01∂xa−1lnx∂adxa∫01xa−1lnxdx???????????含参变量的积分最重要的一点就是不要把指数和对数函数的求导弄混了=∫01xadx=F(a)=\int_{0}^{1}\frac{x^a-1}{lnx}dx\\\frac{dF(a)}{da}=\int原创 2020-10-11 18:44:25 · 1468 阅读 · 0 评论 -
高阶反函数的导数
对于一阶的,在“同一点”,两个值是互为倒数的。例如:y=f(x)=sin(x),x=g(y)=arcsin(y)f′(x)=cos(x)g′(y)=dxdy=1dydx=1cos(x)=⟶同一点1cos(x)=1−y2例如:y=f(x)=sin(x) , x=g(y)=arcsin(y) \\f'(x)=cos(x)\\g'(y)=\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}=\frac{1}{cos(x)}=\stackrel{同一点}{\longrightarrow}原创 2020-10-10 12:27:29 · 3368 阅读 · 0 评论 -
两中值问题+一元微积分
两中值问题证明$$$$等于同一区间使用两次不等两种情况1.将一个区间分开2.分别使用中值定理c是不能直接看出来的,肯定和题目有关的,要靠推倒出来的其他形式全部专业化函数形式后(比如说积分)求c使用待定系数法,先分为两段用用拉个朗日中值定理,瞅瞅我们能得到什么结果。因为f(x)为连续函数,所以其原函数F(x)存在,∫abf(x)dx=F(b)−F(a)=F′(ξ)(b−a)\int_{a}^{b}f(x)dx=F(b)-F(a)=F'( ξ)(b-a)∫abf(x)dx=F(b)−F(a原创 2020-10-08 17:45:31 · 313 阅读 · 0 评论 -
变上限积分的求导
d∫0φ(x)f(t)dtdx=f(φ(x))φ′(x)\frac{d\int_{0}^{ φ(x)}f(t)dt}{dx}=f( φ(x)) φ'(x)dxd∫0φ(x)f(t)dt=f(φ(x))φ′(x)原创 2020-10-08 13:20:13 · 2857 阅读 · 0 评论 -
(偏)导函数连续,可微,可(偏)导,连续
(偏)导函数连续,可微,可(偏)导,连续原创 2020-10-08 13:16:20 · 296 阅读 · 0 评论 -
叉乘与空间曲线的切向量
一个空间曲线是由两个面相交而成由F(x,y,z)=0和G(x,y,z)=0确定的空间曲线,空间曲线的切向量?n1×n2=ln_1 \times n_2 =ln1×n2=l其中n1和n2为曲面在Po处的法向量,l为曲线在Po处的切向量向量的叉乘计算公式a×b=∣ijkaxayazbxbybz∣a \times b=\left| \begin{array} { l l } { i} & { j } & {k } \\ {a_x } & {a_y} & {a_z }原创 2020-10-08 12:43:41 · 2896 阅读 · 0 评论 -
对曲线的坐标的积分的斯托克斯公式+参数定积分法
原创 2020-10-08 08:22:46 · 1329 阅读 · 0 评论 -
三重积分极坐标形式的直角坐标解法
原创 2020-10-08 08:19:28 · 5167 阅读 · 0 评论 -
拉格朗日中值+柯西中值求极限+对于等价无穷小,等价代换,极限的四则运算法则是根本+一元微积分
limx→0ax−asinxx3f′(ξ)=ax−asinxx−sinx原式=limx→0ax−asinxx−sinxx−sinxx3=limξ,x→0f′(ξ)x−sinxx3=limξ,x→0lna∗aξ∗16x3+o(x3)x3=16lna \lim_{x \rightarrow 0} \frac{a^{x}-a^{sinx}}{x^3}\\f'(ξ)=\frac{a^{x}-a^{sinx}}{x-sinx}\\原式=\lim_{x \rightarrow 0} \frac{a^{x}-原创 2020-10-05 14:15:41 · 1201 阅读 · 0 评论 -
极限运算中的一个经典例题
同一极限号后的同一变量的趋向具有同时性,不能人为制造先后顺序limx→∞e−x(1+x)x2⟶limx→∞e−x∗ex=1 \lim_{x\rightarrow \infty}e^{-x}(1+x)^{x^2}\\\stackrel{}{\longrightarrow} \lim_{x\rightarrow \infty}e^{-x}*e^x\\=1x→∞lime−x(1+x)x2⟶x→∞lime−x∗ex=1应该将极限值放在一起计算limx→∞e−x∗ex2ln(1+1x)⟶eln原创 2020-10-05 14:15:25 · 2467 阅读 · 0 评论 -
从正切公式到三角代换
sin(A+B)=sinAcosB+cosAsinBcos(A+B)=cosAcosB−sinAsinBtan(A+B)=sin(A+B)cos(A+B)=tanA+tanB1−tanAtanBtan(θ)=sin(θ)cos(θ)=tanθ2+tanθ21−tan2θ2=2tk1−t2k(2tk)2+(1−t2k)2=1解得k=1+t2则sinθ=2t1+t2,cosθ=1−t21+t2sin(A+B)=sinAcosB+cosAsinB\\cos(A+B)=cosAcosB-sinAsinB\\ta原创 2020-10-04 07:56:44 · 632 阅读 · 0 评论 -
拉格朗日中值定理证明不等式
对于x>0,证明ex>x+1对于x>0,证明e^x>x+1 对于x>0,证明ex>x+1对于a>b>0,证明1a<1a<1a对于a>b>0,证明\frac{1}{a}<\frac{1}{a}<\frac{1}{a}对于a>b>0,证明a1<a1<a1原创 2020-10-03 22:49:10 · 2377 阅读 · 0 评论 -
重心(质量对位置的加权平均)与转动惯量(使物体甩动的难易程度与质量m和到轴的距离r的平方有关)
重心:质量对位置的加权平均最简单的连续的情形(一维的x轴,y轴同理):xˉ=∫xρ(x)dx∫ρ(x)dx二维平面:xˉ=∫xρ(x)dx∫ρ(x)dx xˉ=∫xρ(x)dx∫ρ(x)dx重心:质量对位置的加权平均\\最简单的连续的情形(一维的x轴,y轴同理):\bar x= \frac{\int x ρ(x)dx}{\int ρ(x)dx}\\二维平面:\bar x= \frac{\int x ρ(x)dx}{\int ρ(x)dx} \ \bar x= \frac{\int x ρ原创 2020-10-03 14:51:55 · 2315 阅读 · 0 评论 -
反常积分
如果非要为这份爱加上一个期限我希望是一万年−−−−−−反常积分∫−∞+∞x1+x2dx=−∞如果非要为这份爱加上一个期限我希望是一万年------反常积分\\ \int_{-\infty}^{+ \infty }\frac{x}{1+x^2}dx=-\infty 如果非要为这份爱加上一个期限我希望是一万年−−−−−−反常积分∫−∞+∞1+x2xdx=−∞...原创 2020-10-03 14:51:05 · 639 阅读 · 0 评论 -
旋转体体积
平面绕直线旋转(直线不穿过平面)二维空间中有区域D,直线AB:V=2π∫∫r(x,y)dσ V=2\pi \int \int r(x,y)dσV=2π∫∫r(x,y)dσ不能使用低乘高公式,低乘高有重复,只能用于计算外围的面情况(并且绕x轴旋转的情况是与环状微元的计算方法相容的):Vx=2π∫∫ydxdy=2π∫ab∫0f(x)ydxdy=π∫abf(x)2dx V_x=2\pi \int \int ydxdy= 2\pi \int_{a}^{b} \int_{0}^{f(x)} ydxdy原创 2020-09-27 09:43:28 · 3059 阅读 · 0 评论 -
三类常见坐标表示的弧微元
三类常见坐标的弧微元:(1)直角坐标:C:y=y(x) ds=1+y′2dxy=y(x) \ ds=\sqrt{1+y'^2 }dxy=y(x) ds=1+y′2dx(2)参数方程:C:{x=x(t)y=y(t) ds=x′2+y′2dt\begin{cases}x=x(t)\\y=y(t)\end{cases} \ \ ds=\sqrt{x'^2+y'^2 }dt{x=x(t)y=y(t) ds=x′2+y′2dt(原创 2020-09-27 09:23:42 · 3723 阅读 · 0 评论 -
x^2+y^2=2ax
∫0aa2−x2dx=π4a2 \int_{0}^{a} \sqrt[]{a^2-x^2}dx=\frac{\pi }{4}a^2∫0aa2−x2dx=4πa2∫0a2ax−x2dx=∫0aa2−(x−a)2d(x−a)=π4a2 \int_{0}^{a} \sqrt[]{2ax-x^2}dx= \int_{0}^{a} \sqrt[]{a^2-(x-a)^2}d(x-a)=\frac{\pi }{4}a^2∫0a2ax−x2dx=∫0aa2−(x−a)2d(x−a)=4πa2...原创 2020-09-27 08:11:27 · 5723 阅读 · 0 评论 -
初等函数的麦克劳林级数展开+逆函数的展开求法
因为出现了Euler数和Bernoulli p216对于教学的建议拍220原创 2020-09-10 15:07:40 · 7388 阅读 · 0 评论 -
两角和正切的展开式+正切公式+一元微积分
tan(A+B)=(tanA+tanB)/(1-tanAtanB)(由原来的公式上下同除coscos)原创 2020-08-03 15:31:53 · 3202 阅读 · 0 评论