
群与作用
文章平均质量分 77
FakeOccupational
这个作者很懒,什么都没留下…
展开
-
群的拉格朗日定理的应用:欧拉定理的两种证明方法+RSA加密算法
欧拉定理的两种证明方法(通过群阶数关系证明和集合比较证明)+RSA加密算法原创 2024-08-18 20:37:41 · 1160 阅读 · 0 评论 -
沃尔什变换
傅里叶->沃尔什变换沃尔什函数(集)拉德梅克(符号)函数拉德没课函数是定义在0到1上,满足正交性质的一族奇函数。拉德没课函数是定义在0到1上,满足正交性质的一族奇函数。拉德没课函数是定义在0到1上,满足正交性质的一族奇函数。奇函数乘以奇函数等于偶函数,由于正交性质,同一个函数只能用0或1次(模二加)加上组合得到的部分,得到沃尔什函数(集),二进制码和格雷码一一对应(单射+漫射),所以只是表示不同而已\color{blue}奇函数乘以奇函数等于偶函数,\\由于正交性质,同一个函数只能用0或1原创 2022-01-08 19:51:13 · 3437 阅读 · 2 评论 -
预解式0
原创 2021-05-02 12:42:40 · 234 阅读 · 0 评论 -
环与域
环:+,-,*R上加法群的幺元(单位元)称为零元,记为0,且对∀a∈R有a∗0=0∗a=0R上加法群的幺元(单位元)称为零元,记为0,且对\forall a\in R有 a*0=0*a=0R上加法群的幺元(单位元)称为零元,记为0,且对∀a∈R有a∗0=0∗a=0满足前三条称为环,满足1,2,3,4为交换环,满足1,2,3,5为幺环,1,2,3,6为无零因子环,1−6为整环,1−7为域 整数环是整环:对于整数的普通加法和乘法构成环,对于乘法满足原创 2021-03-21 20:39:30 · 1443 阅读 · 0 评论 -
循环群的子群
循环群的子群仍是循环群无限循环群的子群除{e}生成的外都是无限阶的对于阶数n的每个正因子d,恰有一个d阶子群首先and生成的群一定是G的d阶子群需要证明其唯一性:假设am也生成了d阶子群,(am)d=e,则由n整除m∗d⇒m=k∗ndam=ak∗nd=(and)k,所以am生成的群的集合是and生成的集合的子集,又因为两群阶数相同,所以两个集合相等首先a^{\frac{n}{d}}生成的群一定是G的d阶子群\\需要证明其唯一性:假设a^m也生成了d阶子群,(a^m)^d=e,则由n整除m*d\Ri.原创 2021-03-21 13:11:38 · 18347 阅读 · 6 评论 -
小波算法笔记
多分辨分析:闭的线性子空间的序列,选定的尺度函数({Vj,j∈Z},Φ(t))inL2(r)(\{V_j,j\in Z \},Φ(t)) in L^2(r)({Vj,j∈Z},Φ(t))inL2(r)A:尺度方程的时域形式Φ(t)=2∑nhnΦ(2t−n),系数hn=<Φ(t),2hnΦ(2t−n)>,n∈ZΦ(t)=\sqrt[]{2}\sum_n h_nΦ(2t-n),系数h_n=<Φ(t),\sqrt[]{2} h_nΦ(2t-n)>,n\in ZΦ(t)=2∑n原创 2021-03-12 17:00:47 · 751 阅读 · 0 评论 -
s3不是循环群
认为S3是循环群的同志应该都只关注了一个维度的操作,比如(1,2,3)的依次轮换旋转认为S_3是循环群的同志应该都只关注了一个维度的操作,比如(1,2,3)的依次轮换旋转认为S3是循环群的同志应该都只关注了一个维度的操作,比如(1,2,3)的依次轮换旋转循环置换(轮换)2轮换称为对换奇置换和偶置换如果一个置换等于偶数个对换的乘积,则我们称之为偶置换。否则我们称之为奇置换。显然,偶置换的逆序数为偶数,奇置换的逆序数为奇数。...原创 2021-03-09 14:52:32 · 2702 阅读 · 0 评论 -
循环群:一个元素不断作用生成的群
循环群:一个元素不断作用生成的群例子:<N4,+4>是以1为生成元的循环群因为2=1+14=123=1+14+14=130=2+24=14<N4,+4>={14,1,12,13}\color{blue}<N_4,+_4>是以1为生成元的循环群\\因为2=1+1_4=1^2\\3=1+1_4+1_4=1^3\\0=2+2_4=1^4\\<N_4,+_4>=\{ 1^4,1,1^2,1^3\}<N4,+4>是以1为生成元的循环群因为2=原创 2021-02-17 12:15:05 · 2902 阅读 · 0 评论 -
子群的陪集-》群的拉格朗日定理
子群的陪集:定理一:一个子群的任意两个陪集要么相等,要么不相交定理一:一个子群的任意两个陪集要么相等,要么不相交定理一:一个子群的任意两个陪集要么相等,要么不相交先讨论左陪集,右陪集的性质类似G=<N6,+6>的子群H=<N2,+6>在G中的左陪集G={0,1,2,3,4,5},H={0,1,2}0H={0,2,4}1H={1,3,5}2H={2,4,0}3H={3,5,1}4H={4,0,2}5H={5,1,3}可见,0H=2H=4H={0,2,4},1H=3H=5H={1,原创 2021-01-23 17:11:34 · 5390 阅读 · 2 评论 -
伽罗瓦理论笔记暂记1.1
x4+bx2+c=0有四个根a1,a2,a3,a4x^4+bx^2+c=0有四个根a_1,a_2,a_3,a_4x4+bx2+c=0有四个根a1,a2,a3,a4Q条件or关系F=Q(a,b){a1+a2=0a3+a4=0\begin{cases}a_1+a_2=0& \text{}\\a_3+a_4=0& \text{}\end{cases}{a1+a2=0a3+a4=0保持上述关系不变的置换有8个F1=F(b2−4c)F1=F(\sq原创 2020-11-14 22:13:17 · 221 阅读 · 0 评论 -
可解群-方程的根式解
可解群:有限群G是可解的,如果有一个嵌套的子群列G1,……,Gn满足G=G0⊃‾G1⊃‾G2⊃‾……⊃‾Gn={e}并且每个Gi+1在Gi中正规正规,Gi/Gi+1是阿贝尔群有限群G是可解的,如果有一个嵌套的子群列G_1,……,G_n\\满足G=G_0 \underline { \supset } G_1\underline { \supset } G_2\underline { \supset }……\underline { \supset }G_n=\{e\}\\并且每个G_{i+1}在G_原创 2020-11-13 18:09:06 · 1026 阅读 · 0 评论 -
正规子群
H是G的子群,如果对所有g∈G,都有gHg−1=H则称H是G的正规子群H是G的子群,如果对所有g\in G,都有gHg^{-1}=H\\则称H是G的正规子群H是G的子群,如果对所有g∈G,都有gHg−1=H则称H是G的正规子群正规子群,或者说正规性体现了群的交换性,阿贝尔群的任何子群都是正规子群(所有阿贝尔群的子群都是正规子群,所以每个子群都引发商群。阿贝尔群的子群、商群和直和也是阿贝尔群。)...原创 2020-11-13 18:02:55 · 2866 阅读 · 0 评论 -
刘维尔定理暂记
∫xm(a+bxn)pdx \int x^m(a+bx^n)^pdx ∫xm(a+bxn)pdx其中a,b均为实数, m,n,p为有理数。则该积分初等可积的条件分别为以下三种:p为整数。p为整数。p为整数。m+1n为整数。\frac{m+1}{n}为整数。nm+1为整数。p+m+1n为整数。p+\frac{m+1}{n} 为整数。p+nm+1为整数。...原创 2020-09-25 18:43:21 · 1191 阅读 · 0 评论 -
Liouville定理(实际上是Liouville第二定理)+切比雪夫定理
举个栗子∫x(1+x)2exdx \int \frac{x}{(1+x)^2} e^xdx∫(1+x)2xexdx由函数乘积与函数复合的求导法则知x(1+x)2=a(x)+a′(x) 由函数乘积与函数复合的求导法则知 \frac{x}{(1+x)^2} =a(x)+a'(x)由函数乘积与函数复合的求导法则知(1+x)2x=a(x)+a′(x)x(1+x)2=(x+1)−1(1+x)2=x+1(1+x)2−1(1+x)2\frac{x}{(1+x)^2}=\frac{(x+1)-1}{(1+x)原创 2020-09-25 18:43:06 · 3056 阅读 · 0 评论 -
非本质扩张,平凡扩张与中心扩张暂记
相关群的概念:对称群(symmetric group),设X是一个集合(可以是无限集),X上的一个双射:a:X→X(即是置换)。集合X上的所有置换构成的族记为S(x),S(x)关于映射的复合运算构成了一个群,当X是有限集时,设X中的元素个数为n,则称群S(x)为n次对称群。将S(x)的子群统称为变换群(transformation group)。置换群一类具体的有限群。有限集合到自身的一一映射称为一个置换。由全排列知识可知,这样的置换共有n! n!n!个。研究置换群的性质和构造的理论称为置换群论.原创 2020-09-12 10:06:48 · 1036 阅读 · 0 评论 -
群的直积
对于四阶群:一定存在二阶子群二阶子群一定是正规子群,然后做四阶模二阶的商群的分类,就得到了一个商群z/2z=z2z/2z=z_{2}z/2z=z2S3/A3≃z2S_{3}/A_{3} \simeq z_{2}S3/A3≃z2O(n)/SO(n)≃z2,正交矩阵行列式±1,特殊正交矩阵行列式+1O(n)/SO(n) \simeq z_{2} , 正交矩阵行列式\pm 1,特殊正交矩阵行列式+1O(n)/SO(n)≃z2,正交矩阵行列式±1,特殊正交矩阵行列式+1.原创 2020-09-11 18:42:18 · 1863 阅读 · 0 评论 -
方程根式解笔记4
对于一个群判断是否为可解群并不是很简单但是对于文字系数的一般的群文字系数的5次和5次以上的方程不能用根式解定理次数≥5 的文字系数的多项式方程不能用根式解.所谓文字系数,就是方程所有系数是独立的( 或称代数无关的)从而n次方程的n个根也是独立的,于是根之间在方程系数域中没有任何代数关系,前面谈到的“保持根之间在方程系数域中的全部关系”的条件现在相当于没有条件,因此,n个根的所有n!个置换就构成了方程在系数域上的群,它同构于Sn.或者用现在的语言叙述为,文字系数的n次方程对基域的伽罗瓦群同构原创 2020-09-09 12:15:09 · 655 阅读 · 0 评论 -
证明小于60阶的无非阿贝尔单群用到的定理
证明小于60阶的无非阿贝尔单群用到的定理原创 2020-09-04 07:34:05 · 1846 阅读 · 0 评论 -
群的阶数与群的指数
群的阶数(有限群的阶数)有限群是具有有限多个元素的群。群论的重要内容之一。其所含元素的个数,称为有限群的阶。有限群可分为两大类:可解群与非可解群(特别包括非交换单群)(见群、有限单群)。一般来讲群的元素个bai数称为群的阶。du对于群当中的某个元素a,最小zhi的满足a^n=e的正dao整数n称为元素a的阶(也叫周期),如果不存在这种n可以称a的周期为0(或无穷),可以等价地说a生成的循环群的阶就是a的阶。群的指数(子群H对群G的指数):一子群H对群G的指数定义为G对H的陪集的集合的基数,即陪集的数原创 2020-09-03 12:46:44 · 20611 阅读 · 0 评论 -
五元交错群A5是单群
有限单群(有限群G只有两个平凡的正规子群,定义和素数很像)当G的子群H是正规子群时,则可考虑G模H的商群,H不是正规子群做商只能得到陪集,不是群G为有限交换群:则G是单群iff G的阶为P(结合之前的结论素数阶群一定是循环群,素数阶群一定是唯一的)证因Abel群G的任何子群都是G的正规子群,故Abel群G为单群当且仅当G无非平凡子群,若G是有限阶的,由Sylow第- -定理知G无非平凡子群当且仅当G的阶为素数.此时,Va∈G且a≠e有G=(a).无限阶的Abel群一定有(非平凡)正规子原创 2020-08-31 18:37:49 · 6791 阅读 · 0 评论 -
伽罗瓦理论笔记暂记2
置换群(有限群与之同构)扩张的理论基本概念伽罗瓦群:设K是域F的有限扩张,则K的所有F-自同构的集合关于映射的乘法构成一个群,称为K在F上的伽罗瓦群不变子域:伽罗瓦扩张:原创 2020-08-29 19:27:00 · 1151 阅读 · 0 评论 -
伽罗瓦理论笔记暂记1
方程f(x)=0在F上的群每一个多项式方程f(x)=0,都可以看作某个系数域F上的多项式方程,F是复数域C的子域。n次方程f(x)=0在复数域C中有n个根{a1,……,an},不妨设这里没有重根。这个根集到自身的置换最多有n!个,他们构成一个群,同构于Sn.但是这些根往往不是独立的,或者说根之间是有代数关系的。这n!个置换中保持根之间在F中的全部关系(粗略地说,这里的“关系”,是指系数在F中的上述n个根的多项式等式关系)都不变的置换的个数一般少于n!个,他们又构成上述那个群的一个子群,同构于Sn的原创 2020-08-29 07:13:59 · 557 阅读 · 0 评论 -
方程根式解笔记3
方程根式解的充要条件直接从域的角度不容易做出来,但是从群的角度就大大降低了难度。特征零上的域 如数域 的扩张的问题方程的伽罗瓦群域是对加减乘除的四则运算封闭的设F(x)是域F上的多项式,即f®∈ F[x]. 为简单,我们设F是特征为0的域,f(x) 是无重根的多项式,记K是f(x)的分裂域,则Gal(K/F) 称为方程f(x) = 0对基域F的伽罗瓦群,记为G(f(x), F).由于K是可分多项式f(x)∈F[x] 的分裂域,所以K是F的伽罗瓦扩张,从而可以用伽罗瓦基本定理方程的根式解原创 2020-08-28 20:36:37 · 805 阅读 · 0 评论 -
置换群的相关概念,表排序,数字华容道
相关群的概念:对称群(symmetric group),设X是一个集合(可以是无限集),X上的一个双射:a:X→X(即是置换)。集合X上的所有置换构成的族记为S(x),S(x)关于映射的复合运算构成了一个群,当X是有限集时,设X中的元素个数为n,则称群S(x)为n次对称群。将S(x)的子群统称为变换群(transformation group)。置换群一类具体的有限群。有限集合到自身的一一映射称为一个置换。由全排列知识可知,这样的置换共有n! n!n!个。研究置换群的性质和构造的理论称为置换群论.原创 2020-08-21 17:06:12 · 9996 阅读 · 0 评论 -
sylow子群与sylow定理和单群
#有相应的pdf子群的阶数是大群阶数的因子大群分解为子群的配集不同的陪及是不交的用陪集可定义等价关系当然先在可用轨道的观点看陪集把集合分解为不相交的轨道的并左平移发f(g,x)=gx得到的轨道是右陪集(因为x是不变的,Ox)右平移得到的是左陪集Sylow子群(书上的126页)(4)的10min开始134书的引言:建立这个子群的方法是多种多样的,这里使用 群在集合上的作用的观点,变换群的观点皮裙 p群:一类特殊的有限群其阶数是某素数p的次方幂引理:p群作用在x上首先x能分原创 2020-08-21 12:15:04 · 2950 阅读 · 0 评论 -
群与作用3.1-Sylow子群的例子
subgroup 100=22⋅52100=2 ^ { 2 } \cdot 5 ^ { 2 }100=22⋅52|G|=100must have subgroup of order:1 ,2 ,4 and 25order 4 25 的subgroups conjuct to each other4是:2−sylowsubgroup,25是:5−sylowsubgroup 4是:2-sylow subgroup, 25是:5-sylow subgroup 4是:2−sylowsubgroup原创 2020-08-14 19:39:46 · 2016 阅读 · 0 评论 -
群作用的例子
群作用在线性代数中的例子F为数域,GL(n,F)可逆矩阵A为F上的n∗n矩阵,取T∈GL(n,F) A 为F上的n*n矩阵, 取T\in GL(n,F)A为F上的n∗n矩阵,取T∈GL(n,F)矩阵的行变换是左乘 TA------------------------左平移矩阵的列变换是右乘 AT^(-1)------------------右平移矩阵相似变换是共轭 TAT^(-1)----------------- 共轭迷向子群为与 J(Jodan ) 可交换的可逆矩阵的全体合同作用原创 2020-08-12 15:59:54 · 833 阅读 · 0 评论 -
群在两个集合上的作用等价,群在群的集合上的伴随作用,群的中心与Abel群
群在两个集合上的作用等价:条件一:集合的一一对应x→φx′,∀g∈G集合的一一对应x \stackrel { \varphi } { \rightarrow } x ^ { \prime },\forall g \in G集合的一一对应x→φx′,∀g∈G条件二:x→φx′↓g↓gx→φx′\left. \begin{array} { l } x &{ \stackrel { \varphi } { \rightarrow } } & x ^ { \prime }\\原创 2020-08-02 10:19:36 · 2144 阅读 · 0 评论 -
群与作用笔记
iff 当且仅当群的生成元组:(书的117页)《《《《《《可以用集合生成群,群中的元素为集合中元素本身或逆的有限次乘积。则可证 a,b属于群,则a乘b的逆属于群。特别的,当集合只有一个元素时,群即为此元素的循环群,元素称为生成元。例如 整数加群是由1作为生成元生成的集合有限 群 称为有限生成群置换群Sn n》=3不是置换的 阶为n的阶乘Sn可由所有的轮换生成 轮换就是部分连续的一圈向前移一位。《《《《《《《《记为将指标用圆括号将轮换的指标括起来轮换不相交 就是 两个圈不重复更进一步置换可由原创 2020-07-29 17:07:19 · 1967 阅读 · 0 评论