
代数
文章平均质量分 78
FakeOccupational
这个作者很懒,什么都没留下…
展开
-
矩阵对应多项式?多项式?→从特征多项式和哈密顿凯莱定理开始
首先将一个矩阵和一个多项式对应起来(矩阵的多项式,矩阵的零化多项式,相似的矩阵对应零化多项式有相同的最小多项式[https://zhidao.baidu.com/question/273308991.html])两个相似的矩阵就是同一个线性映射在两组不同基底下的矩阵;在线性变换的过程中,特征向量所代表方向上的向量只伸缩、不旋转;线性映射的特征子空间全部都是该映射的不变子空间。从映射与矩阵对应的角度、我们就是在试图寻找空间 V 中一个合适的基,使得映射 f 在这个基下对应于一个对角矩阵空间太大,处理原创 2021-05-22 11:55:50 · 4077 阅读 · 1 评论 -
模:域上的向量空间的推广
向量空间称V为域P上的一个线性空间,或向量空间,V中元素称为向量。称V为域P上的一个线性空间,或向量空间,V中元素称为向量。称V为域P上的一个线性空间,或向量空间,V中元素称为向量。1.加法:∀α,β∈V→α+β∈V\forall α,β\in V\rightarrow α+β\in V∀α,β∈V→α+β∈V2.数乘:k∈P,α∈V→kα∈Vk\in P,α\in V \rightarrow kα\in Vk∈P,α∈V→kα∈V加法和数乘需要满足的一堆条件:α+β=β+α,对任意α,β∈V.原创 2021-05-16 12:38:51 · 662 阅读 · 0 评论 -
有限布尔代数的表示理论:由集合生成的布尔代数
基底基底基底称(L,∗,+,¬,0,1)是布尔代数,n维布尔代数中e1,……,en是L得一组基地,若∀a∈L,a=k1e1+k2e2+……+knen(其中ki为代数系统中得0元或1元)称(L,*,+,\neg,0,1)是布尔代数,n维布尔代数中e_1,……,e_n是L得一组基地,若\\\forall a \in L,a=k_1 e_1+k_2 e_2+……+k_n e_n(其中k_i为代数系统中得0元或1元)称(L,∗,+,¬,0,1)是布尔代数,n维布尔代数中e1,……,en是L得一组基地,若∀a原创 2021-03-18 12:44:24 · 1353 阅读 · 0 评论 -
集合的基数
1.集合的基数1.集合的基数1.集合的基数∣A∣将集合中元素的个数推广到无穷集合称为集合的基数(势/浓度)|A|将集合中元素的个数推广到无穷集合称为集合的基数(势/浓度)∣A∣将集合中元素的个数推广到无穷集合称为集合的基数(势/浓度)2.两个集合对等(等势,等浓)−−−bernstein定理(康托尔−伯恩斯坦−施罗德定理):2.两个集合对等(等势,等浓)---bernstein定理(康托尔-伯恩斯坦-施罗德定理):2.两个集合对等(等势,等浓)−−−bernstein定理(康托尔−伯恩斯坦−施罗德定理)原创 2021-03-16 08:37:24 · 9867 阅读 · 0 评论 -
康托尔的朴素集合论和罗素悖论
罗素构造了一个集合S:S由一切不属于自身的集合所组成。然后罗素问:s是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果s属于S,根据S的定义,s就不属于S;反之,如果s不属于S,同样根据定义,s就属于S。无论如何都是矛盾的。罗素悖论提出后,数学家们纷纷提出自己的解决方案。人们希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。“这些原则必须足原创 2021-03-14 20:00:20 · 1480 阅读 · 0 评论 -
模格
https://wenku.baidu.com/view/ff85f311227916888486d760.htmlhttps://max.book118.com/html/2018/1011/7041105062001152.shtmhttps://blog.csdn.net/longji/article/details/79136855原创 2021-03-14 15:49:44 · 2380 阅读 · 0 评论 -
集合等价类的个数-第二类Stirling数
(mn)表示将n个不同地球放入m个相同的盒中的方案个数(没有空盒),称(mn)为第二类Stirling数(_m^n)表示将n个不同地球放入m个相同的盒中的方案个数(没有空盒),称(_m^n)为第二类Stirling数(mn)表示将n个不同地球放入m个相同的盒中的方案个数(没有空盒),称(mn)为第二类Stirling数Stirling数的性质(0n)=0,(1n)=1,(2n)=2n−1−1,……,(n−1n)=cn2,(nn)=1(_0^n)=0,(_1^n)=1,(_2^n)=2^{n-1}-1原创 2021-03-13 21:03:09 · 1335 阅读 · 0 评论 -
证明集合的包含关系和相等的常用的方法
包含关系:A⊆B包含关系:A\subseteq B包含关系:A⊆B方法1:定义:任取x∈A,再演绎地证出x∈B成立方法1:定义:任取x\in A,再演绎地证出x\in B成立方法1:定义:任取x∈A,再演绎地证出x∈B成立方法2:传递性:找到集合T,A⊆T,T⊆B方法2:传递性:找到集合T,A \subseteq T,T \subseteq B方法2:传递性:找到集合T,A⊆T,T⊆B方法3:等价定义:A∪B=B,A∩B=A,A−B=Φ方法3:等价定义:A \cup B=B,A\cap B=A,A-B原创 2021-03-13 16:30:05 · 5122 阅读 · 0 评论 -
关系的定义与性质
一、关系的定义定义Ai是n个集合,集合A1×A2×..An的一个子集F,称为A1,A2...An上的一个n元关系。特别地,集合A×B的一个子集R,称为集合A与B上的一个元关系(binaryrelation),简称为关系。对于x∈A,y∈B,R是A与B上的一个二元关系,著(x,y)∈R,则称x,y有关系R,记为xRy;着(x,y)∉R,则称x,y没有关系R。若B=A,则R称为A上的二元关系定义A_i是n个集合,\\集合A_1×A_2×..A_n的一个子集F,称为A_1,A_2...A_n上的一个n元关系原创 2021-03-13 10:34:16 · 3976 阅读 · 0 评论 -
预解式
伽罗瓦预解式由于ax2+bx+c=0=(x−x1)(x−x2)由此得出韦达定理{x1+x2=−bax1∗x2=ca同时对于两个元素x1,x2的基础对称多项式就是x1+x2,x1∗x2在高等代数中有证明:任何对称多项式都可以由基础对称多项式表示所以我们希望有另一个对称多项式能和x1+x2=−ba组合成方程组然后解出来即(x1−x2)2=(x1+x2)2−4x1∗x2=(−ba)2−4∗ca=b2−4aca2由此可解出(不管正负根):{x1=b2−4aca2−ba2x2=−b2−4aca2+ba2=−b2−原创 2021-03-12 19:38:06 · 1135 阅读 · 0 评论 -
容斥原理
∣A∪B∣=∣A∣+∣B∣−∣A∩B∣|A∪B| = |A|+|B| - |A∩B| ∣A∪B∣=∣A∣+∣B∣−∣A∩B∣∣A∪B∪C∣=∣A∣+∣B∣+∣C∣−∣A∩B∣−∣B∩C∣−∣C∩A∣+∣A∩B∩C∣证明:∣AUBUC∣=∣AUB∣+∣C∣−∣(AUB)∩C∣=∣A∣+∣B∣−∣A∩B∣+∣C∣−∣(A∩C)U(B∩C)∣=∣A∣+∣B∣−∣A∩B∣+∣C∣−(∣A∩C∣+∣B∩C∣−∣A∩B∩C∣)=∣A∣+∣B∣+∣C∣−∣A∩B∣−∣A∩C∣−∣B∩C∣+∣A∩B∩C∣|A∪B∪C|原创 2021-03-10 08:59:00 · 331 阅读 · 0 评论 -
谓词逻辑的推理
1.所有金属都导电;铜是金属;故铜导电1.所有金属都导电;铜是金属;故铜导电1.所有金属都导电;铜是金属;故铜导电解:令M(x):x是金属。C(x):x导电。a:铜。符号化为:Vx(M(x)−→C(x)),M(a)=C(a)(1)M(a)P(前提条件)(2)∀x(M(x)→C(x))P(3)M(a)→C(a)US(2)(4)C(a)T(1)(3)∣解:令M(x): x是金属。C(x): x导电。a:铜。符号化为:Vx(M(x)-→C(x)), M(a) = C(a)\\(1) M(a) \qqu原创 2021-03-07 16:00:34 · 1289 阅读 · 0 评论 -
代数系统习题
《代数系统》习题0.在自然数集N上,下列哪种运算是可结合的?(2)0.在自然数集N上,下列哪种运算是可结合的? ( 2)0.在自然数集N上,下列哪种运算是可结合的?(2)(1) ab=a-b(2) ab=max{a,b} (3) ab=a+2b (4) ab= |a-b|1.任何一个具有两个或以上元的半群,它(A)1.任何一个具有两个或以上元的半群,它(A)1.任何一个具有两个或以上元的半群,它(A)A:不可能是群B不一定是群C一定是群D是交换群例:二阶循环群有两个元素是群也是半群,但是,全体偶原创 2021-03-07 15:05:22 · 2281 阅读 · 1 评论 -
完全匹配(hall定理)&完美匹配&最大匹配(匈牙利算法)+计算二分图的完美匹配的个数
用“广度有限”搜索增广路径1,对于一个未匹配的节点u,寻找它的每条边,如果它的边上的另一个节点v还没匹配则表明找到了一个匹配,直接转步骤4;2,假如节点u它边上的另一个节点v已经匹配,那么就转向跟v匹配的节点假设是w,然后再对w重复1,2的步骤,即寻找增广路.3,假如我们在1,2步过程中找到- -条增广路,那么修改各自对应的匹配点,转步骤4,若无增广路,则退出.4,匹配数+1;...原创 2021-02-27 15:59:12 · 10288 阅读 · 0 评论 -
二元关系的性质与二元关系:等价,相容,偏序
等价相容相容关系的关系图的特点每个节点都有环(自反性决定的)不同节点之间如果有边一定成对出现(对称性决定)由以上特点可对关系图简化不画环(自反性决定的)两个有向边用一个无向边取代(对称性决定)相容关系的关系矩阵的特点主对角线都是1(自反性决定的)沿着主对角线对称的元素相等(对称性决定)由以上特点可对关系矩阵简化下三角矩阵相容类相容类:根据相容关系分类,如果两个元素满足相容关系,则分为一类下图中的相容类有:{a,b},{a,b,c},{a,c,d},{a,b,c,d},{.原创 2021-02-20 12:56:18 · 4417 阅读 · 0 评论 -
平面图的对偶图与着色方法,色多项式
对偶图(区域的染色变成了点的染色):在平面图每个面中取一个代表点,原来相邻的两个面的代表点之间用边相连接G的对偶图不一定与G同构,如果同构,则称G是自对偶的。G的对偶图G对偶图的结点数面数对偶图的结边数边数对偶图的结面数节点数有了对偶图:Powell着色算法:(1)对偶图结点按度数的递减顺序排阶列;(2)用第1种颜色对第1个结点着色,按排列次序,对与本轮已着色点不相邻的每个点着相同的颜色。(3)用第2种颜色对尚未着色的点重复(2)第3种颜色对尚未着色的点原创 2021-02-19 13:44:08 · 2139 阅读 · 0 评论 -
二元关系:(自反,对称,传递)关系的求逆与闭包
关系的求逆与闭包关系的求逆关系求逆运算的性质关系的闭包如果R不满足某关系,但是R'满足闭包的计算方法关系的求逆R是A到B的关系,Rc(R−1)={<y,x>∣<x,y>∈R}R是A到B的关系,R^c(R^{-1})=\{<y,x> | <x,y>\in R\}R是A到B的关系,Rc(R−1)={<y,x>∣<x,y>∈R}根据定义,Rc是将R中所有两个序偶的位置互换Rc的有向图:是将R的有向图的所有边的方向颠倒Rc的矩阵:R矩原创 2021-02-17 12:14:27 · 5669 阅读 · 0 评论 -
格与布尔代数(笔记)
格:偏序集S中任意两个元素都存在上确界以及下确界特别的,所有全序都是格,称为平凡格(S,∨,∧):由格S诱导的代数运算求上确界(求两个元素最小上界∨)以及下确界(求两个元素最大下界∧ )形成的系统格S的子格S’:要求S的子集S’对于∨,∧封闭对偶格:哈斯图颠倒180度分配格a∧(b∨c)=(a∧b)∨(a∧c)a∨(b∧c)=(a∨b)∧(a∨c)a∧(b∨c)=(a∧b)∨(a∧c)\\a∨(b∧c)=(a∨b)∧(a∨c)a∧(b∨c)=(a∧b)∨(a∧c)a∨(b∧c)=(a∨b)∧(a原创 2021-02-13 18:06:14 · 5957 阅读 · 1 评论 -
握手定理(握手数之和为偶数)和相关2个推论
握手定理(Handshaking Theorem):握手数之和为偶数,两倍的边数但是,满足握手定理,握手图不一定存在,比如握手序列(4,4,1,1,1,1)握手图存在的充要条件:一个非升序的握手序列:1.满足握手定理2.∀K∈[1,n],前K个度的和≤K(K−1)+∑i=K+1nmin(di,K)2.\forall K \in [1,n],前K个度的和 \leq K(K-1) + \sum_{i=K+1}^{n} min(d_i,K)2.∀K∈[1,n],前K个度的和≤K(K−1)+∑i=K+原创 2021-02-10 19:38:44 · 5432 阅读 · 0 评论 -
点支配集,点覆盖集,点独立集+边覆盖集,边独立集(匹配)笔记
通信例子:要在几个城市之间建立通讯基站,直接相连代表能覆盖信号,最少需要在几个城市建基站?图G的点支配集V∗:∀v∈(V−V∗),∃v∗∈V∗(v∗,v)∈E图G的点支配集V^*:\forall v\in (V-V^*),\exists v^* \in V^* (v^*,v)\in E 图G的点支配集V∗:∀v∈(V−V∗),∃v∗∈V∗(v∗,v)∈E即 V 中的顶点要么是 V集合中的元素、要么与 V中的一个顶点相邻。极小 最小https://www.cnblogs.com/CreatorKou/原创 2021-02-10 15:29:00 · 1758 阅读 · 0 评论 -
欧拉图,哈密顿图
欧拉图欧拉图:格尼斯堡问题-》能一笔画的图,闭迹(边不重复,点可以)定理一 充要条件(欧拉定理):连通+所有顶点的度是偶数证明:连通+所有顶点的度是偶数⇒有环C\footnotesize 证明:连通+所有顶点的度是偶数 \Rightarrow \href{https://blog.csdn.net/ResumeProject/article/details/113742280}{有环 C } 证明:连通+所有顶点的度是偶数⇒有环C如果C不能包含所有定点,则从图中去掉C部分,顶点个的度还是偶数,原创 2021-02-08 11:32:24 · 1003 阅读 · 0 评论 -
连通图,判定图是否有环,正则图和完全图的定义
正则正则:regular,有规律的,有规则的。正则表达式,又称规则表达式。(英语:Regular Expression)百度:正则图是指各顶点的度均相同的无向简单图在图论中,正则图中每个顶点具有相同数量的邻点; 即每个顶点具有相同的度。 正则的有向图也必须满足更多的条件,即每个顶点的内外自由度都要彼此相等。具有k个自由度的顶点的正则图被称为k度的k-正则图。 此外,奇数程度的正则图形将包含偶数个顶点。G=(V,E),ifv∈V,deg(v)=r,则称G为r−正则图G=(V,E),if v\in V原创 2021-02-08 09:36:38 · 9473 阅读 · 0 评论 -
离散数学-谓词逻辑与前束范式
谓词逻辑三段论命题与命题函数三段论A:大前提,B:小前提,C:结论,A,B⇒CA,B\Rightarrow C A,B⇒C的推理是有效的但是却无法使用命题逻辑论证命题与命题函数金子闪光,但闪光的不一定都是金子 金子闪光,但闪光的不一定都是金子金子闪光,但闪光的不一定都是金子令令令...原创 2021-02-01 15:21:49 · 5207 阅读 · 0 评论 -
离散数学-命题逻辑+异或(对称差)+主析取范式+主合取范式+推理
命题逻辑异或与精确表达异或精确表达:真值表需要精确对应命题公式的简化与命题等价命题公式的简化命题等价:真值表相同基础等价公式重言式(永真式)与矛盾式(永假式)重言蕴含式:基础重言蕴含式范式析取范式与合取范式主析取范式和主合取范式推理推理的方法推理的规则异或与精确表达异或异或,英文为exclusive OR,缩写成xor异或的数学符号为“⊕”,计算机符号为“eor”。其运算法则为:a⊕b = (¬a ∧ b) ∨ (a ∧¬b)如果a、b两个值不相同,则异或结果为1。如果a、b两个值相同,异或结果原创 2021-01-24 16:56:44 · 13264 阅读 · 0 评论 -
基础重言蕴含式
1…P∧Q⇒P P\wedge Q\Rightarrow P P∧Q⇒P2.P∧Q⇒QP\wedge Q\Rightarrow Q P∧Q⇒Q3.P⇒P∨Q P\Rightarrow P\vee QP⇒P∨Q4.Q⇒P∨Q Q\Rightarrow P\vee QQ⇒P∨Q5.P,Q⇒P∧Q P,Q\Rightarrow P\wedge QP,Q⇒P∧Q6.(P→Q)∧(Q→R)⇒P→R (P\rightarrow Q)\wedge(Q\rightarrow R)\Righta原创 2021-01-24 15:12:25 · 3841 阅读 · 2 评论 -
命题逻辑的基础等价公式
1.对合律¬¬P⇔P \neg\neg P\Leftrightarrow P¬¬P⇔P2.幂等律P∨P⇔P P∧P⇔P P\vee P\Leftrightarrow P\;\;\;P\wedge P\Leftrightarrow PP∨P⇔PP∧P⇔P3.交换律P∨Q⇔Q∨P P∧Q⇔Q∧P P\vee Q\Leftrightarrow Q\vee P\;\;\;P\wedge Q\Leftrightarrow Q\wedge PP∨Q⇔Q∨PP∧Q⇔Q∧P4.结合律P∨(原创 2021-01-24 14:00:16 · 4266 阅读 · 0 评论 -
平面图的判定定理:Kuratowski定理(库拉托夫斯基定理)
平面图的判定定理:Kuratowski定理Kuratowski定理:图的同胚:K5和K3,3是非平面图的证明Kuratowski定理:G是平面图当且仅当G中不含与K5或K3,3同胚的子图G是平面图当且仅当G中不含与K_5或K_{3,3}同胚的子图G是平面图当且仅当G中不含与K5或K3,3同胚的子图图的同胚:两个图经过一系列插入和消去2度顶点后同构,则两个图同胚A,B同胚:A可通过连续变化得到BK5和K3,3是非平面图的证明链接...原创 2021-01-23 14:50:13 · 8140 阅读 · 0 评论 -
联通平面图的欧拉公式及推广(联通的推广需要用到平面次数和等于边数的两倍)
联通平面图的欧拉公式及推广联通平面图的欧拉公式联通的平面图分割的区域的个数+顶点的个数-边界的个数=2联通平面图的欧拉公式的推广:联通平面图的欧拉公式联通的平面图分割的区域的个数+顶点的个数-边界的个数=2R记区域个数 ,V记顶点个数(图的阶数) ,E记边界个数 ,则 R+ V- E= 2归纳法的证明:当E=0时,R=1,V=1,R+V−E=2。设当E=k时,R+V−E=2成立E=k+1{无回路(树):增加一条边并且没有形成回路所以也增加了一片叶R+(V+1)−(E+1)=2有回路原创 2021-01-23 13:02:59 · 4922 阅读 · 0 评论 -
利用相似求满足给定条件的抽象矩阵的特征值后再求特征向量
A为3阶矩阵,α为3维向量,A满足α,Aα,A2α线性无关aAα+bA2α+A3α=0A为3阶矩阵,α为3维向量,\\A满足α,Aα,A^2α线性无关\\aAα+bA^2α+A^3α=0A为3阶矩阵,α为3维向量,A满足α,Aα,A2α线性无关aAα+bA2α+A3α=0因为α,Aα,A2α线性无关所以矩阵P=(α,Aα,A2α)为3阶可逆矩阵再由条件知AP=PB即A(α,Aα,A2α)=(Aα,A2α,−aAα−bA2α)=(α,Aα,A2α)(00010−a01−b)因为α,Aα,A^2α线性无原创 2020-12-24 18:31:12 · 843 阅读 · 0 评论 -
伴随矩阵的特征值和特征向量
如果0是矩阵A的一个特征值,则0也是伴随矩阵A的一个特征值;如果k是矩阵A的一个非零特征值,则存在非零向量a: Aa=ka则 AAa=kAa|A|a=kAaAa=(|A|/k)a|A|/k 是A的一个特征值。原创 2020-12-13 13:04:25 · 27738 阅读 · 2 评论 -
R(AB)+n>=R(A)+R(B)
(n为A的列数,B的行数)(AOIB)=(I−AOI)(AOIB)(I−BOI)=(O−ABIO) \left( \begin{array} { l l } { A } & { O } \\ { I } & { B} \end{array}\right)= \left( \begin{array} { l l } { I } & { -A } \\ { O } & { I} \end{array}\right) \left( \begin{array} { l l }原创 2020-11-11 22:29:38 · 2927 阅读 · 0 评论 -
一般的n阶范德蒙行列式计算的两个主要步骤
一列(行)化为零→按列(行)提取公因式一列(行)化为零 \rightarrow 按列(行)提取公因式一列(行)化为零→按列(行)提取公因式Dn=∣111x1x2x3x12x22x32∣D_n=\left|\begin{array}{cccc} 1& 1 &1 \\ x_1&{ x_2}&{ x_3}\\ { x_1}^{2}&{ x_2}^{2}&{ x_3}^{2}\\ \end{array}\right| Dn=∣∣∣∣∣∣1x1x1原创 2020-10-21 12:36:39 · 3449 阅读 · 0 评论 -
矩阵特征值的计算
1.主对角元素为a,其他元素全为b,|A|=[a+(n-1)b] (a-b)^(n-1)2.每行元素和为常数,则这个常数就是一个特征值,特征向量为(1,1,1,1,1)3.若r(A)=1,则矩阵的一个特征值为tr(A),其他为零4.行列式为零,零是一个特征值5.实对称矩阵对应的二次型化为标准后对应的6.由A的特征值,A*的|A|/λAX=λX{\boxed{AX=λX}}AX=λXA∗AX=∣A∣X=A∗λX{\boxed{A^*AX=|A|X=A^*λX}}A∗AX=∣A∣X=A∗λX∣原创 2020-10-08 08:19:47 · 15152 阅读 · 0 评论 -
增广矩阵and线性方程组----线性代数
齐次线性方程组:(1)只有零解:⇔系数行列式D≠0克莱姆法则:D≠0⇒只有零解极大线性无关向量组:n个n维向量相关⇔矩阵的行列式=0(并且同时交换一个向量组多个相同位置的分量不改变相关性)(1)只有零解:\Leftrightarrow系数行列式D\neq 0 \\ 克莱姆法则:D\neq 0 \Rightarrow只有零解 \\ 极大线性无关向量组:\\ n个n维向量相关 \Leftrightarrow 矩阵的行列式 =0(并且同时交换一个向量组 多个相同位置的分量不改变相关性)(1)只有零解:⇔系数行原创 2020-10-03 14:55:05 · 14453 阅读 · 0 评论 -
方程组变换+初等变换+矩阵等价+克莱姆法则
方程组变换+初等变换+矩阵等价+行列式的几何意义克莱姆法则(ABCD)\left( \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right)(ACBD)原创 2020-09-22 09:44:13 · 1113 阅读 · 0 评论 -
矩阵变换的直观观点
矩阵变换的直观看法(基变换的观点):R2→R3(1,0)(0,1)→(1,0,0)(0,1,0)(0,0,1)(123456)R^2 \rightarrow R^3\\ (1,0) (0,1) \\\rightarrow (1,0,0)(0,1,0)(0,0,1)\\\left ( \begin{array} { l l } { 1 } & { 2 } \\{ 3 } & { 4} \\{ 5 } & {6 } \\原创 2020-09-22 09:25:13 · 215 阅读 · 0 评论 -
行列式的3种计算方法技巧和一点注意
行列式的算法行列式初等变换是最基本的,还有逐行相加凑零元的方法行列式的展开性质因为行列式就是计算不同行不同列的项的乘积并有反对称的性质,所以这种线性的展开是可以的,∣a+bc+d3456∣\left | \begin{array} { l l } { a+b } & { c+d } \\{ 3 } & { 4} \\{ 5 } & {6 } \\ \end{array}\right|∣∣∣∣∣∣原创 2020-09-01 09:58:03 · 8228 阅读 · 0 评论 -
伴随矩阵和原矩阵的关系+AB=0+由伴随矩阵求原矩阵(当伴随矩阵的秩不为零时(A=(\frac{A*}{|A|})^{-1}))
伴随矩阵和原矩阵的关系n nn-1 1n-1 0若r(A)=n ,则r(A*) = n,若r(A)=n-1,则r(A*)=1,若r(A)<n-1,则r(A*)=0 r(A)=n,则|A|≠0,|A||A*|=1,|A*|≠0,所以这时候r(A*)=n r(A)=n-1,则rank A*>=1,AA*=0,rank(A*)=1 r(A)<n-1,则A的代数余子式都为零,A*=0,r(A*)=0 AA*=|A|E,A*的列向量为如果AB=O,那么r(A原创 2020-08-19 19:58:09 · 15439 阅读 · 2 评论 -
矩阵初等变换的“打洞技巧”与“分块矩阵的行列式公式”
矩阵打洞是高等代数的基本功。利用分块矩阵的乘法将矩阵的某个块变为零(ABCD)=(I0CA−1I)(AB0D−CA−1B)\left( \begin{array} { l l } { A } & { B } \\ { C } & { D} \end{array}\right)=\left( \begin{array} { l l } { I } & { 0 } \\ { C A^{-1}} & { I} \end{array}\right)\left( \begin.原创 2020-08-18 18:04:09 · 9270 阅读 · 1 评论 -
行列式的两种计算方法
范德蒙德行列式结构而范德蒙德型行列式的特征就是有逐行(列)元素按幂递增(减)eg:Dn=∣a1na1n−1b1...a1b1n−1b1na2na2n−1b2...a2b2n−1b2n...............annann−1bn...anbnn−1bnnan+1nan+1n−1bn+1...an+1bn+1n−1bn+1n∣eg:D_n=\left|\begin{array}{cccc} a_{1}^n& a_{1}^{n-1}b_1&... &a_1b_1^{n-1}&a原创 2020-08-02 17:43:06 · 4296 阅读 · 0 评论