
概率论
文章平均质量分 83
FakeOccupational
这个作者很懒,什么都没留下…
展开
-
Johnson–Lindenstrauss Lemma
吻数-维基百科链接刚才有人问到“吻数”(Kissing Number),一个单位球同时最多能与多少个单位球接触?写了个简明回答,顺便转过来。答案是12。有趣的是不同维数的吻数。 1,2,3,4维,吻数分别为2,6,12,24。大于4维 时,没有定论。 但维数等于24时,反倒有准确答案,吻数为196560。 这是因为24维时有很多对称群好用。 统计学习中的covering number和packing number是什么意思?packing number伯恩斯坦不等式...原创 2022-02-14 17:06:42 · 695 阅读 · 0 评论 -
随机过程的均值函数、自相关函数、协方差函数
随机过程的均值是定义在某个时间点上的随机变量的函数随机过程的均值是定义在某个时间点上的随机变量的函数随机过程的均值是定义在某个时间点上的随机变量的函数协方差函数CX(t1,t2)=E((Xt1−E(Xt1))(Xt2−E(Xt2)))协方差函数就是同一个随机过程在两个时间点的协方差协方差函数C_X(t_1,t_2)=E((X_{t_1}-E{(X_{t_1})})(X_{t_2}-E{(X_{t_2})}))\\协方差函数就是同一个随机过程在两个时间点的协方差协方差函数CX(t1,t2)=E((X原创 2022-01-07 17:35:55 · 28987 阅读 · 0 评论 -
随机过程:母函数
矩母函数与特征函数矩母函数与特征函数与分布函数一一对应矩母函数与特征函数与分布函数一一对应矩母函数与特征函数与分布函数一一对应矩母函数ψX(t)=E(etX)性质:ψX(t)′=E(XetX),当t=0,则为一阶矩(n次导数对应n阶矩)ψ_X(t)=E(e^{tX})\\性质:ψ_X(t)'=E(Xe^{tX}),当t=0,则为一阶矩(n次导数对应n阶矩)ψX(t)=E(etX)性质:ψX(t)′=E(XetX),当t=0,则为一阶矩(n次导数对应n阶矩)特征函数φX(t)=E(eitX)φ原创 2022-01-07 17:24:43 · 622 阅读 · 0 评论 -
随机过程:马尔科夫链
泊松过程是一个计数过程原创 2022-01-03 17:51:49 · 1439 阅读 · 0 评论 -
随机过程:泊松过程性质
泊松过程{Nt,t≥0}(1)当s<t,P(Ns=k∣Nt=n)=Cnk(st)k(1−st)n−k,k=0,1,…,n泊松过程\{N_t,t\geq 0\} \\(1) 当s < t,P(N_s=k|N_t=n)=C_n^k(\frac{s}{t})^k(1-\frac{s}{t})^{n-k},k=0,1,…,n泊松过程{Nt,t≥0}(1)当s<t,P(Ns=k∣Nt=n)=Cnk(ts)k(1−ts)n−k,k=0,1,…,n《随机过程及其在金融领域中的应用》原创 2022-01-02 22:30:26 · 2041 阅读 · 0 评论 -
随机过程:复合泊松过程
E(Nt)=E((λt)kk!e−λt)=λt(泊松过程的期望均值都为λ)E(N_t)=E(\frac{(\lambda t)^k}{k!}e^{-\lambda t})=\lambda t(泊松过程的期望均值都为\lambda)E(Nt)=E(k!(λt)ke−λt)=λt(泊松过程的期望均值都为λ)复合泊松过程de定义级性质Yt=∑n=1Ntξn,Nt为泊松过程,ξn独立同分布,则对于任意t≥0Y_t=\sum_{n=1}^{N_t} \xi_n ,N_t为泊松过程,\xi_n独立同分布,则对于原创 2022-01-02 21:35:59 · 10267 阅读 · 2 评论 -
随机过程:齐次泊松过程的定义
N(t)计数函数X_n "到达"时间间隔S_n 发生时间: x1+x2+ x_n独立增量性?只与时间长短有关,与时间起点无关平稳增量性=独立增量性+iid上界是计数函数原创 2021-12-22 11:08:50 · 3632 阅读 · 0 评论 -
概率论:高斯随机向量的分布函数
高斯随机向量的分布函数x1∼N(μ1,σ12),x2∼N(μ2,σ22),x1,x2独立x_1\sim N(\mu_1,\sigma_1^2),x_2\sim N(\mu_2,\sigma_2^2),x_1,x_2 \color{red} 独立x1∼N(μ1,σ12),x2∼N(μ2,σ22),x1,x2独立p(x1,x2)=12πσ12σ22exp(−12((x1−μ1)2σ12+(x2−μ2)2σ22))p(x_1,x_2)=\frac{1}{2\pi \sqrt{\sig原创 2021-09-26 16:34:27 · 1802 阅读 · 0 评论 -
切比雪夫不等式 ≥ε≤
切比雪夫不等式期望计算:E(X)=∫−∞+∞xf(x)dxE(X)=\int_{-\infty}^{+\infty} xf(x)dxE(X)=∫−∞+∞xf(x)dx方差(方差顾名思义:(与均值的)差的平方)计算:D(X)=∫−∞+∞(x−E(X))2f(x)dxD(X)=\int_{-\infty}^{+\infty} (x-E(X))^2f(x)dxD(X)=∫−∞+∞(x−E(X))2f(x)dxD(X)=E2(X)−E(X2)D(X)=E^2(X)-E(X^2)D(X)=E2(X)−E原创 2021-08-09 20:23:53 · 1771 阅读 · 0 评论 -
连续二维随机变量的函数的积分的两种方法
设X,Y相互独立,均服从[0,1]上的均匀分布,求Z=X+Y的分布设X,Y相互独立,均服从[0,1]上的均匀分布,求Z=X+Y的分布设X,Y相互独立,均服从[0,1]上的均匀分布,求Z=X+Y的分布分布函数法z<0,Fz(z)=00≤z<1,Fz(z)=∫0zdx∫0z−xf(x,y)dy0≤z<1,Fz(z)=1−∫z−11dx∫z−x1f(x,y)dy算完分段函数后再分段求导即可得fz(z)z<0,F_z(z)=0\\0 \leq z <1,F_z(z)=\int原创 2020-12-24 18:29:39 · 5761 阅读 · 0 评论 -
k* φ((x-a)/b)的均值=k*a*b的证明
k∗φ((x−a)/b)的均值E(X)=∫−∞+∞xk∗φ((x−a)/b)dx∫−∞+∞xk∗φ(x−ab)dx=k∗∫−∞+∞b∗(x−a)+abφ(x−ab)d(b∗x−ab)=kb2∗∫−∞+∞(x−a)+abφ(x−ab)d(x−ab)=kb2∗∫−∞+∞((x−a)b+ab)φ(x−ab)d(x−ab)=kb2∗∫−∞+∞((x−a)b)φ(x−ab)d(x−ab)+kb2∗∫−∞+∞(ab)φ(x−ab)d(x−ab)=kb2∗∫−∞+∞(ab)φ(x−ab)d(x−ab)=k∗a∗bk*原创 2020-12-20 19:04:19 · 269 阅读 · 0 评论 -
全概率公式与贝叶斯公式
1、全概率公式:划分并求和公式。2、 贝叶斯公式:条件概率公式1.1添加链接描述X,Y相互独立,X服从-10113\frac{1}{3}3113\frac{1}{3}3113\frac{1}{3}31Y服从0,1上的U均匀分布求Z=X+Y原创 2020-12-18 11:52:43 · 2206 阅读 · 0 评论 -
假设检验
假设检验原创 2020-12-18 11:51:19 · 452 阅读 · 0 评论 -
中心极限定理(暂记)
由均值方差的性质,Z=x−μσ,则E(z)=0,var(z)=1由均值方差的性质,Z=\frac{x- μ}{\sqrt{σ}},则E(z)=0,var(z)=1由均值方差的性质,Z=σx−μ,则E(z)=0,var(z)=1原创 2020-12-15 18:21:12 · 332 阅读 · 0 评论 -
高斯分布 正态分布的推导
∫−∞∞e−x2dx=π的推导\int _ { - \infty } ^ { \infty }e^{-x^2} dx= \sqrt { \pi } 的推导∫−∞∞e−x2dx=π的推导∬e−x2e−y2dxdy=∬e−(x2+y2)dxdy⟶dxdy=rdθdr∫02πdθ∫0+∞12er2dr2\iint e^{-x^2}e^{-y^2}dxdy=\iint e^{-(x^2+y^2)}dxdy \stackrel{dxdy=rdθdr}{\longrightarrow} \int_0原创 2020-12-08 10:34:49 · 1587 阅读 · 0 评论 -
具有可加性的分布
具有可加性的分布:X服从参数为λ1的泊松分布,Y服从参数为λ2的泊松分布,X与Y相互独立,Z=X+Y,求证Z服从参数为λ1+λ2的泊松分布X 服从参数为 λ_1的泊松分布,Y 服从参数为λ_2的泊松分布,\\X 与 Y 相互独立,Z=X+Y,求证 Z 服从参数为λ_1+λ_2 的泊松分布X服从参数为λ1的泊松分布,Y服从参数为λ2的泊松分布,X与Y相互独立,Z=X+Y,求证Z服从参数为λ1+λ2的泊松分布离散型:ppp独立的泊松分布之和仍服从泊松分布独立的泊松分布之和是否仍服从泊松分布?原创 2020-12-02 17:30:42 · 29566 阅读 · 8 评论 -
点估计之矩估计
矩估计de原理:E(1n∑i=1nxik)=E(xk)矩估计de原理:E(\frac{1}{n}\sum_{i=1}^{n}x_{i}^k)=E(x^k)矩估计de原理:E(n1i=1∑nxik)=E(xk)证明:证明:证明:原创 2020-11-20 11:33:25 · 1921 阅读 · 0 评论 -
一维随机变量函数的分布和一类不能用换元法解出的二维随机变量函数的“最值”分布
一维随机变量函数的分布和一类不能用还原法解出的二维随机变量函数的分布原创 2020-11-07 16:55:46 · 629 阅读 · 0 评论 -
二项分布&泊松分布&泊松过程&指数分布
二项分布&泊松分布&泊松过程&指数分布过程:事物发展所经过的程序(processes)-分布期望方差B(n,P)Cnkpk(1−p)n−kC _ { n } ^ { k}p^k(1-p)^{n-k}Cnkpk(1−p)n−knpnp(1-p)P(λ)λke−λk!\frac{ λ^ke^{-λ}}{k!}k!λke−λλλ指数分布E(λ)λe−λx(x>=0),0(x<0) λe^{-λx}(x>=0),0(原创 2020-10-24 08:57:29 · 1334 阅读 · 0 评论 -
概率论与数理统计中的独立(独立 独立同分布 不相关)
关键词:独立 独立同分布 不相关独立:P(A*B)=P(A)*P(B)二维:pij=pi⋅∗p⋅jp_{ij}=p_{i·}*p_{·j}pij=pi⋅∗p⋅j(独立与相容:互不相融 AB=Φ )#mermaid-svg-kO8QXFBdScEgocEy .label{font-family:'trebuchet ms', verdana, arial;font-family:var(--mermaid-font-family);fill:#333;color:#333}#mermaid-sv原创 2020-10-21 20:06:03 · 3119 阅读 · 0 评论 -
χ^2分布(卡方),t分布,F分布的表达式
对于N(0,1)标准正太分布总体的抽样分布χ^2分布,t分布,f分布χ^2分布:χ2(n)=X12+X22+……+Xn2χ^2(n)=X_1^2+X_2^2+……+X_n^2χ2(n)=X12+X22+……+Xn2t分布t(n)=XY/nt(n)=\frac{X}{\sqrt{Y/n}}t(n)=Y/nXf分布F(m,n)=Y1/mY2/nF(m,n)=\frac{ Y_1/m}{Y_2/n}F(m,n)=Y2/nY1/m伽马函数-利用偶函数性质与换元-正态分布对普通正态总原创 2020-10-21 12:47:23 · 9742 阅读 · 0 评论 -
极大似然估计:极大+似然(可能性)+估计
极大似然估计=极大+似然(可能性)+估计极大似然估计的重要元素: 取对数 +求导矩(xn的期望)估计:{对总体的均值与方差的估计:μ^=1n∑xi,σ^2=1n∑(xi−xˉ)2用参数表示矩后,由等式关系解出参数矩(x^n的期望)估计:\\ \begin{cases}对总体的均值与方差的估计 : \hatμ=\frac{1}{n}\sum x_i,\hatσ^2=\frac{1}{n}\sum (x_i-\bar x)^2\\用参数表示矩后,由等式关系解出参数\end{cases}矩(x原创 2020-10-01 09:05:41 · 297 阅读 · 0 评论 -
伽马函数-利用偶函数性质与换元-正态分布
Gamma公式展示 Γ(n)=(n−1)!∀n∈N\Gamma(n) = (n-1)!\quad\foralln\in\mathbb NΓ(n)=(n−1)!∀n∈N 是通过 Euler integralΓ(z)=∫0∞tz−1e−tdt .\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.Γ(z)=∫0∞tz−1e−tdt.$$\Gamma(1) =1,\Gamma( ) =1$$...原创 2020-09-02 19:05:41 · 1269 阅读 · 0 评论 -
随机变量的期望和方差B(n,P) H(N,M,n) P(λ)+U(a,b) E(λ)正态分布+概率论
H(N,M,n):超几何分布B(n,P) :二项分布P(λ):泊松分布/Poisson分布H⟶N→+∞B⟶n很大p很小PH\stackrel{N\rightarrow +\infty}{\longrightarrow} B\stackrel{n很大p很小}{\longrightarrow}PH⟶N→+∞B⟶n很大p很小P产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k 的概率,当N为无穷大时,超几何分布就是二项分布离散型分布期望方差H(原创 2020-09-01 20:31:08 · 2208 阅读 · 0 评论