
数学
文章平均质量分 74
FakeOccupational
这个作者很懒,什么都没留下…
展开
-
【数学 函数空间】拉普拉斯变换解微分方程步骤
YsYsyt。原创 2024-11-15 19:00:00 · 2030 阅读 · 0 评论 -
【数学 函数空间】格拉姆-施密特正交化&切比雪夫多项式推导
在向量空间VVV中,如果一组向量v1v2vnv1v2...vn彼此正交且非零,那么它们就构成VVV的一组正交基。若它们的范数均为 1,则称为标准正交基(即正交归一基)。原创 2024-11-14 19:00:05 · 885 阅读 · 0 评论 -
bsd猜想 Murmuration of Eliptic Curves(笔记)
我想简要谈谈我们一直在研究的这项工作的非常自然的延伸之一,所以嗯安德鲁·怀尔斯(andrew wiles)当他批准马的最后一个定理时,他的一个非常重要的关键步骤是他证明了某个椭圆曲线是模的,这意味着 l 函数将椭圆曲线与 a 的 l 函数关联起来或等于 a 的 l 函数某种模块化形式。从那时起, 这个结果得到了某种程度的扩展,特别是在 2001 年证明了有理数上的所有椭圆曲线都是模的,我们将排名零的分布绘制为蓝色,将排名一的分布绘制为红色,大多数分布是这个紫色重叠区域。但是简单情况是有办法的。原创 2024-03-25 19:37:11 · 1153 阅读 · 0 评论 -
矩阵距离和范数+python实现暂记+
马氏距离,闵可夫斯基距离,块行距离,Jaccard等距离的定义及部分实现原创 2022-06-06 15:00:00 · 280 阅读 · 0 评论 -
半正交矩阵(定义)
半正交矩阵wiki如M=[10],满足MtM=Im,m(ATA=I or AAT=I. )[10]∗[10]=1=Im,morthogonal matrix[abcdefghi]=[ A2∗3正交阵的一半ghi]⇒A∗AT=I2∗2如M=\begin{bmatrix}1\\0\end{bmatrix},满足M^tM=I_{m,m}(A^T A = I \text{ or } A A^T = I. \,)\\\begin{bmatrix}1&0\end{bm原创 2022-02-22 11:51:07 · 1861 阅读 · 0 评论 -
Delaunay triangulation algorithm德劳内三角剖分法简介
Delaunay三角剖分算法B站讲解视频Delaunay三角剖分{最接近于规则化的的三角网三角形外接圆内部没有其他点如果不存在四点共圆则唯一Delaunay三角剖分\left\{\begin{array}{l}最接近于规则化的的三角网\\三角形外接圆内部没有其他点\\如果不存在四点共圆则唯一\end{array}\right.Delaunay三角剖分⎩⎨⎧最接近于规则化的的三角网三角形外接圆内部没有其他点如果不存在四点共圆则唯一算法步骤:构造一个“大”的三角形包含所有输入点选择一个点原创 2022-02-19 10:20:29 · 3277 阅读 · 0 评论 -
Random Features for Large-Scale Kernel Machines阅读
Efficient Transformers: A SurveyPerfomer论文:RETHINKING ATTENTION WITH PERFORMERS本文中提到:Random Features for Large-Scale Kernel MachinesTo accelerate the training of kernel machines, we propose to map the input data to a randomized low-dimensional feature原创 2022-02-19 09:47:59 · 1433 阅读 · 0 评论 -
线性代数:矩阵的左乘和右乘的几何意义
左乘和右乘左乘行变换,右乘列变换从维数的角度看P对A的变换:左乘(右同理):PA=Pm,n(a1n,1 a2n,1 a3n,1)可见左乘是行空间中向量的重新组合左乘行变换,右乘列变换\\从维数的角度看P对A的变换:\\左乘(右同理):PA=P_{m,n}({a1}_{n,1} \ \ a2_{n,1} \ \ a3_{n,1})\\可见左乘是行空间中向量的重新组合左乘行变换,右乘列变换从维数的角度看P对A的变换:左乘(右同理):PA=Pm,n(a1n原创 2022-01-27 15:01:41 · 7616 阅读 · 0 评论 -
哈达玛积,基本积
A⊙B=C , cij=aij×bijA\odot B=C\ \ , \ \ \ cij=aij×bijA⊙B=C , cij=aij×bij原创 2021-10-04 12:46:33 · 1665 阅读 · 0 评论 -
计算复杂度NPC:组合优化问题的近似算法-顶点覆盖问题
组合优化问题的近似算法当问题规模为n,近似率ρ(n)满足:max(CC∗,C∗C)≤ρ(n)当问题规模为n,近似率\rho(n)满足:max(\frac{C}{C^*},\frac{C^* }{C})\leq \rho(n)当问题规模为n,近似率ρ(n)满足:max(C∗C,CC∗)≤ρ(n)顶点覆盖问题一个顶点覆盖问题的解法C=ϕ  原创 2021-09-15 13:09:09 · 2346 阅读 · 0 评论 -
统计学:LMMSE线性最小均方误差估计
LMMSE线性最小均方误差估计LMMSE原理z的数学期望为0z的数学期望为0z的数学期望为0以上为最终的估计公式,C代表斜方差,下面进行分析与推广以上为最终的估计公式,C代表斜方差,下面进行分析与推广以上为最终的估计公式,C代表斜方差,下面进行分析与推广LMMSE性质计算举例zˉ为均值\bar z为均值zˉ为均值...原创 2021-09-14 21:57:35 · 8794 阅读 · 3 评论 -
PCA向量空间推导
设行向量x1,x2,……,xn∈Rn。设行向量x_1,x_2,……,x_n\in R^n。设行向量x1,x2,……,xn∈Rn。拉格朗日乘子法求解下述优化问题: &nbs原创 2021-08-08 17:26:53 · 215 阅读 · 0 评论 -
计算某个矩阵的SVD分解与伪逆的
A=[32223−2]A=\begin{bmatrix}3&2&2\\2&3&-2\end{bmatrix}A=[32232−2](1)计算ATA的特征值λ1,λ2,λ3(λ1≥λ2≥λ3)和对应的特征向量v1,v2,v3,要求使得∣∣vi∣∣=1且第一个坐标非负,i=1,2,3(1) 计算 A^TA 的特征值 λ_1,λ_2,λ_3(λ_1 ≥ λ_2 ≥ λ_3) 和对应的特征向量v_1,v_2,v_3,要求使得 ||v_i|| = 1 且第一个坐标非负,i =原创 2021-08-01 17:26:35 · 1287 阅读 · 0 评论 -
有约束的优化问题
无约束的优化问题minf(x) ,f∈C2 &原创 2021-07-22 12:25:09 · 828 阅读 · 0 评论 -
特征值+SVD分解+伪逆(广义逆)
An,n有分解Ax=λx使用det(λI−A)=0求λA_{n,n}有分解Ax=\lambda x\\使用det(\lambda I-A)=0求 \lambdaAn,n有分解Ax=λx使用det(λI−A)=0求λ几何重数(特征值的特征子空间的维数)≤代数重数(根的重数)特征值和为迹,积为det(利用多项式根与系数的关系)几何重数(特征值的特征子空间的维数)\leq 代数重数(根的重数)\\特征值和为迹,积为det(利用多项式根与系数的关系)几何重数(特征值的特征子空间的维数)≤代数重数(根的重数原创 2021-07-21 18:26:57 · 2504 阅读 · 0 评论 -
点到直线的距离计算:中学公式与拉个郎日乘数法
①点到直线距离公式②点到面距离公式③直线到直线距离公式添加链接描述④直线到面距离公式⑤面到面距离公式原创 2021-03-31 20:19:56 · 1629 阅读 · 0 评论 -
二次型区分:二次型对应的矩阵和矩阵对应的二次型
二次型(quadratic form):n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式二次型对应的矩阵:(一定是实对称矩阵)矩阵对应的二次型:(矩阵A对应的二次型)...原创 2020-12-24 18:30:02 · 6900 阅读 · 0 评论 -
隐函数求微分
链式求导法则(隐函数求导法则): 将方程两边都对x求导,有y的地方,先当成y的函数,对y求导,然后再将y对x求导。最后解出dy/dx,dy=y’dx。直接微分(因为具有形式的不变性,所以可以不考虑变量之间的内在关系):将x、y看成等同地位,谁也不是谁的函数,方程两边微分,解出dy即可。x2+y2=1直接微分:2xdx+2ydy=0⇒dy=−xydx链式法则:2x+yy′=0⇒y′=−xy,dy=y′dxx^2+y^2=1\\直接微分:2xdx+2ydy=0 \Rightarrow dy=\frac{原创 2020-12-24 18:29:26 · 8304 阅读 · 4 评论 -
指数复合函数的求导与欧拉方程
指数复合函数的求导与欧拉方程:[f(et)]′=f′(et)∗et [f(e^t)]'=f'(e^t)*e^t[f(et)]′=f′(et)∗etxn∗y(n)+P1∗xn−1∗y(n−1)+……+Pn−1∗xn−1∗y′+Pny=f(x)x ^ { n }*y^{(n)}+P_{1}*x ^ { n-1}*y^{(n-1)}+……+P_{n-1}*x ^ { n-1}*y'+P_{n}y^=f(x)xn∗y(n)+P1∗xn−1∗y(n−1)+……+Pn−1∗xn−1∗y′+Pny=f(x)令原创 2020-12-24 18:28:03 · 3724 阅读 · 0 评论 -
极限的四则运算和洛必达法则的使用条件
洛必达法则的陷阱:点可导和区间可导(原因:洛必达法则是柯西中值的极限形式)x0处的二阶导数存在,可以推出一阶导数在x0处连续。并不能推出一阶导数在x0的邻域内还连续的。n阶导数存在只能使用n-1阶洛f(0)=f′(0)=0,f′′(0)存在且不等于零以一阶导数肯定是存在且连续的limx→0xf(x)∫0xf(t)dt+xf(x)=limx→0f(x)+xf′(x)2f(x)+f′(x)=limx→0f(x)x+f′(x)2f(x)x+f′(x)(这一步出错了)如果从导数的定义理解:其极限为0点原创 2020-12-24 08:27:19 · 4518 阅读 · 2 评论 -
点或积分区域的对称性,积分结果的对称性
F(x,y,z)=0所表示的曲面关于原点对称F(x,y,z)=F(-x,-y,-z)或F(x,y,z)=-F(-x,-y,-z)关于X轴(x,y,z)=F(x,-y,-z)或F(x,y,z)=-F(x,-y,-z)关于XOY(x,y,z)=F(x,y,-z)或(x,y,z)=-F(x,y,-z)前者2倍对称,后者零对称原创 2020-12-23 10:55:14 · 6701 阅读 · 3 评论 -
幂级数求和函数方法
常见幂级数求和函数方法:先导后积(n在分母:∑2+∞xnn(n−1)),先积后导(n在分子:∑0+∞nxn−1),微分方程法(n在分子:∑0+∞(n+1)xnn!)先导后积(n在分母:\sum_{2}^{+\infty} \frac{x^n}{n(n-1)}),\\先积后导(n在分子:\sum_{0}^{+\infty} nx^{n-1}),\\微分方程法(n在分子:\sum_{0}^{+\infty} \frac{(n+1)x^n}{n!})先导后积(n在分母:2∑+∞n(n−1)xn),先积后原创 2020-12-18 11:50:36 · 24550 阅读 · 3 评论 -
一阶微分具有形式不变性和高阶微分不具有形式不变性
du2=(du)2 du^2=(du)^2du2=(du)2参考原创 2020-12-16 21:52:30 · 3555 阅读 · 0 评论 -
一些常见的积分
∫a2−r2rdr=12∫a2−r2dr2=−12∫a2−r2d(a2−r2)=−1223(a2−r2)32+C \int \sqrt{a^2-r^2}rdr=\frac{1}{2}\int \sqrt{a^2-r^2}dr^2=-\frac{1}{2}\int \sqrt{a^2-r^2}d(a^2-r^2)=-\frac{1}{2}\frac{2}{3}(a^2-r^2)^{\frac{3}{2}}+C∫a2−r2rdr=21∫a2−r2dr2=−21∫a2−r2d(a2−r2)=−2132原创 2020-12-16 20:39:46 · 4388 阅读 · 0 评论 -
海涅定理
海涅定理与极限求值原创 2020-12-16 18:12:53 · 8109 阅读 · 0 评论 -
幂函数
x^k原创 2020-12-15 18:18:24 · 183 阅读 · 0 评论 -
上帝公式e^{i\pi}=-1
xiθ=ei∗ln(xθ)(向量(1,0)从0转到ln(xθ)(弧度制)) x ^{i θ}=e^{i*ln(x^θ )}(向量(1,0)从0转到ln(x^θ)(弧度制))xiθ=ei∗ln(xθ)(向量(1,0)从0转到ln(xθ)(弧度制))在x∈[0,2π],a≥e时,才能形成整个圆周在x\in[0,2\pi],a \geq e时,才能形成整个圆周在x∈[0,2π],a≥e时,才能形成整个圆周...原创 2020-12-13 13:08:33 · 4872 阅读 · 0 评论 -
连续,可积,存在原函数,变上限积分
六条路只有两条能通原创 2020-12-07 11:07:35 · 10996 阅读 · 0 评论 -
阿贝尔定理(幂级数收敛半径的)
1.如果幂级数在点x0处(x0不等于0)收敛,则对于适合不等式|x|<|x0|的一切x使这幂级数绝对收敛(幂级数一般都是“盗用”正向级数的判别法,用来判断收敛半径)。2.反之,如果幂级数在点x1处发散,则对于适合不等式|x|>|x1|的一切x使这幂级数发散。证明:前提:1.∑n=0∞anx0n收敛,2.∣x∣<∣x0∣r=∣xx0∣<1由1:通项收敛于零且有界,设界为M则有:∣anxn∣=∣anx0nxnx0n∣=∣anx0n∣∣xx0∣n<Mr2由于等比级数在公比小于1原创 2020-12-02 12:03:20 · 17216 阅读 · 0 评论 -
p级数与p积分(瑕积分的的“N-L公式”)
瑕积分的的“N-L公式” 若b为瑕点:则:∫abf(x)dx=F(b−)−F(a)若a为瑕点:则:∫abf(x)dx=F(b)−F(a+)若a,b均为瑕点:则:∫abf(x)dx=F(b−)−F(a+)若c∈(a,b)均为瑕点:则:∫abf(x)dx=F(b)−F(c−)+F(c+)−F(a)若b为瑕点:则:\int_a^b f(x)dx=F(b^-)-F(a)\\若a为瑕点:则:\int_a^b f(x)dx=F(b)-F(a^+)\\若a,b均为瑕点:则:\int_a^b f(x)dx=F(.原创 2020-12-02 11:51:09 · 9389 阅读 · 0 评论 -
中心极限定理的证明暂记
Yn=∑i=1nxi−nμσnY_n=\frac{\sum_{i=1}^n x_i-n μ}{σ\sqrt[]{n}}Yn=σn∑i=1nxi−nμYn=∑i=1nxi−nμσn=∑i=1n(xi−μσn)Y_n=\frac{\sum_{i=1}^n x_i-n μ}{σ\sqrt[]{n}}=\sum_{i=1}^n(\frac{x_i-μ}{σ\sqrt[]{n}})Yn=σn∑i=1nxi−nμ=i=1∑n(σnxi−μ)fYn⟶F傅里叶变换Yn(jω)=(e−原创 2020-11-20 11:06:41 · 693 阅读 · 0 评论 -
二重积分的换元
二重积分的换元&&雅可比(面积变换之间的“扭曲系数”)(dudv)=(∂u∂x∂u∂y∂v∂x∂v∂y)(dxdy)\left( \begin{array} { l l } {du } \\ { dv } \end{array}\right)=\left( \begin{array} { l l } {\frac{ \partial u }{ \partial x } }&{ \frac{ \partial u}{ \partial y } } \\ { \frac{原创 2020-11-19 18:17:07 · 5194 阅读 · 0 评论 -
格林公式中对偏微分的积分
例子:∬De−y2dxdy∬D∂xe−y2∂x−∂0∂ydxdy=∮Lxe−y2dy\iint_D e^{-y^2}dxdy\\\iint_D\frac{ \partial xe^{-y^2}}{\partial x}-\frac{ \partial 0}{\partial y} dxdy\\=\oint_L xe^{-y^2}dy∬De−y2dxdy∬D∂x∂xe−y2−∂y∂0dxdy=∮Lxe−y2dy...原创 2020-11-16 09:46:35 · 3086 阅读 · 0 评论 -
非齐次线性方程组解的结构暂记
考虑线性方程组AX=b的解(X∈Rn,b∈Rm),如果方程组有解,则解的结构一定是某个特解加上对应的其次方程的解(G/ker(f)≅Im(f))考虑线性方程组AX=b的解(X\in R^n,b\in R^m),如果方程组有解,\\则解的结构一定是某个特解加上对应的其次方程的解\\(G/ker(f)\cong Im(f))考虑线性方程组AX=b的解(X∈Rn,b∈Rm),如果方程组有解,则解的结构一定是某个特解加上对应的其次方程的解(G/ker(f)≅Im(f))AX=b有三个线性无关的解,AX=0有两原创 2020-11-15 22:09:48 · 1973 阅读 · 0 评论 -
特殊的二阶微分方程降阶中的“py交易“
y’’= (dp/dy)*p 或者 p’ (dp/dx)一、f(x,y’)和f(y,y’)正如表面上显示的,方程中是出现x还是出现y,二者只能出现一个。二、当然x,y均没有时,两种降阶方式都可以使用,但是当成没有f(x,y’)来做更简单,这样不用额外乘个p三、两者的计算方法是一致的,只是在计算过程中要积的分可能有些不同,都可以当成f(x,y’)或f(y,y’)来算...原创 2020-11-14 19:11:54 · 206 阅读 · 0 评论 -
积分极限定理+勒贝格控制收敛定理+高数
在处理积分与极限的交换顺序问题上,勒贝格积分比黎曼积分要求的条件要弱的多(并且条件更易于验证)积分与极限交换顺序的定理:控制收敛定理{fn(x)}为E上的一列可测函数\{ f_n(x)\}为E上的一列可测函数{fn(x)}为E上的一列可测函数F(x)为E上的可积函数,且∣fn(x)∣≤F(x)a.e.于E(在E上almost.every.成立),N=1,2……F(x)为E上的可积函数,且|f_n(x)|\leq F(x) a.e.于E(在E上almost.every. 成立),\\N=1,2……F原创 2020-11-12 12:59:34 · 5356 阅读 · 0 评论 -
隐函数存在定理&&隐函数的高阶导数
隐函数定理添加链接描述? 存在唯一性定理? 可微性定理说得简单一些吧,现在已经两个变量之间的一个关系:F(x,y)=0,能否确定一个函数关系,即y=f(x)?,由链式求导法则可知,对y偏导做分母应不为零。(注:需满足连续,可导等前提)隐函数存在定理与几何解释https://blog.51cto.com/10901086/2146928https://zhuanlan.zhihu.com/p/70286816https://wenku.baidu.com/view/e21b710a844769e原创 2020-11-08 14:24:59 · 2950 阅读 · 0 评论 -
数列递推形式的极限&正定,负定,不定与形式导数
数列递推形式的极限&正定,负定,不定与形式导数数列的递推形式的极限:递推函数单调增,数列单调A=(abcd)A=\left( \begin{array} { l l } { a } & { b } \\ { c } & { d} \end{array}\right)A=(acbd)二次型(x,y)(abcd)(xy)的“形式导数”(abcd)(xy)二次型 \quad (x,y)\left( \begin{array} { l l } { a } & { b }原创 2020-10-16 18:34:08 · 1071 阅读 · 0 评论 -
高斯公式(div:点乘)
div()原创 2020-10-15 17:55:09 · 5052 阅读 · 0 评论 -
Abel变换+AD判别法
Abel变换原创 2020-10-05 15:13:58 · 3332 阅读 · 0 评论