几何
文章平均质量分 65
FakeOccupational
这个作者很懒,什么都没留下…
展开
-
Geogebra拓扑学家的正弦曲线
function ggbOnInit(){ggbApplet.evalCommand(设置活动视图(0));ggbApplet.evalCommand(放大(k)));}原创 2021-12-04 16:14:14 · 1142 阅读 · 0 评论 -
First singular vector as a robust representative
引理:方阵C的[λi,vi]引理:方阵C的[\lambda_i,v_i]引理:方阵C的[λi,vi]∣∣∂vi∣∣2≤Σi≠j1(λi−λj)2∣∣∂C∣∣F||\partial v_i||_2\leq \sqrt{\Sigma _{i\neq j}\frac{1}{(\lambda_i -\lambda_j)^2}}||\partial C||_F∣∣∂vi∣∣2≤Σi=j(λi−λj)21∣∣∂C∣∣FF范数:对应元素的平方和再开方,偏导表示对任易标量变量进行偏导数\tiny原创 2021-11-01 23:05:11 · 169 阅读 · 0 评论 -
007*两点(多点)张量(多基表示)
{ga,ga} {g(a),g(a)} {g<a>},g<a>}考虑三阶张量Φ\{g_a,g^a\}\ \ \{g_{(a)},g^{(a)}\} \ \ \{g_{<a>}\},g^{<a>}\}\\考虑三阶张量\Phi{ga,ga} {g(a),g(a)} {g<a>},g<a>}考虑三阶张量Φ...原创 2021-11-01 17:14:48 · 239 阅读 · 0 评论 -
006不同基向量的转换关系
不同基向量的转换关系{gα}和{g(α)}换\{g_\alpha\} 和\{g_{(\alpha)}\} 换{gα}和{g(α)}换{g(α)}=C(α)βgβ,(α)=1,……,mC(α)β为基转换系数同样两个逆变基之间也有:{g(α)}=Cβ(α)gβ,(α)=1,……,m\{g_{(\alpha)}\}=C_{(\alpha)}^\beta g_\beta,(\alpha)=1,……,m\\C_{(\alpha)}^\beta 为基转换系数\\同样两个逆变基之间也有:\{g^{(\alp原创 2021-11-01 17:14:25 · 764 阅读 · 0 评论 -
005张量的表示与张量的指标升降
Φ∈T3(Rm)Φ(u,v,w)∈RΦ(uigi,vjgj,wkgk)∈R(用Φ(uigi,vjgj,wkgk)表示也行)利用张量的性质:Φ(uigi,vjgj,wkgk)=Φ(gi,gj,gk)uivjwk其中uivjwk=(u,gi)(v,gk)(w,gk)=gi⊗gj⊗gk(u,v,w)Φ(gi,gj,gk)记为 ΦijkΦ=Φijkgi⊗gj⊗gk\Phi \in \mathcal T^3(R^m) \\\Phi (u,v,w) \in R\\\Phi(u^ig_i,v_jg^j,w原创 2021-10-28 18:01:04 · 618 阅读 · 0 评论 -
004对分量的指标升降
ξα=(ξ,gα)=ξα=(ξ,gα,β∗gβ)=gα,β∗(ξ,gβ)=gα,β∗ξβ\xi^\alpha=(\xi,g^\alpha)\\=\xi^\alpha=(\xi,g^{\alpha,\beta}*g_\beta)\\=g^{\alpha,\beta}*(\xi,g_\beta)\\=g^{\alpha,\beta}*\xi_\beta\\ξα=(ξ,gα)=ξα=(ξ,gα,β∗gβ)=gα,β∗(ξ,gβ)=gα,β∗ξβ{ξα=gα,β∗ξβξα=gα,β∗ξβ这个就是著名原创 2021-10-28 17:27:38 · 201 阅读 · 0 评论 -
003欧几里得空间的协变基与逆变基,指标升降
Rm的基{gα}α=1m,需要满足det[g1,…,gm]≠0,[g1,…,gm]∈Rm,m可逆∃ Rm的基{gβ}β=1m,满足(gα,gβ)=δαβδαβ={1 α=β0 α≠β将下标称为协变基{gα}α=1m,上标称为逆变基{gβ}β=1mR^m的基\{ g_\alpha\}_{\alpha =1}^m,\\需要满足det[g_1,…,g_m]\neq 0,[g_1,…,g_m]\in R^{m,m}可逆\\\exists \ R^m的基\{原创 2021-10-28 17:15:58 · 674 阅读 · 0 评论 -
002简单张量及其构造性质
∀ ζ η ϑ∈Rm\forall\ \zeta \ \eta \ \vartheta \in R^m∀ ζ η ϑ∈Rmζ ⊗η ⊗ϑ∈T3(Rm)ζ ⊗η ⊗ϑ(u1,u2,u3)=(ζ∗u1)∗(η∗u2)∗(ϑ∗u3)线性性检查略\zeta \ \otimes \eta \ \otimes \vartheta \in \mathcal T ^3(R^m)\\\zeta \ \otim原创 2021-10-28 14:49:24 · 133 阅读 · 0 评论 -
001多重线性函数
p个m维向量u1……upp个m维向量u_1 …… u_pp个m维向量u1……upϕ(u1……up)∈R\phi(u_1 …… u_p)\in Rϕ(u1……up)∈R对每个ui线性:ϕ(u1…auˉi+bu^i…up)=aϕ(u1…uˉi…up)+bϕ(u1…u^i…up)对每个u_i线性:\phi(u_1 …a\bar u_i+b\hat u_i… u_p)=a\phi(u_1 …\bar u_i… u_p)+b\phi(u_1 …\hat u_i… u_p)对每个ui线性:ϕ(u1…au原创 2021-10-28 14:15:55 · 564 阅读 · 0 评论 -
隐函数求导与椭圆的切线
过椭圆x2a2+y2b2=1上一点的切线方程为x0xa2+y0yb2=1y′=−b2xa2y,则斜率k=−b2x0a2y0切线方程y−y0=−b2x0a2y0(x−x0)带入x02a2+y02b2=1,则x0xa2+y0yb2=1过椭圆\frac{x^2}{a^2}+\frac{y^2}{b^2}=1上一点的切线方程为\frac{x_0x}{a^2}+\frac{y_0y}{b^2}=1\\y'=-\frac{b^2x}{a^2y},则斜率k=-\frac{b^2x_0}{a^2y_0}\\切线方程y原创 2020-12-23 12:28:00 · 3596 阅读 · 0 评论 -
点到直线的距离公式: 一元微积分
点到直线的距离公式d=A∗X0+BY0+CA2+B2d=\frac{ A*X_{0}+BY_0+C}{\sqrt{A^2+B^2}}d=A2+B2A∗X0+BY0+C公式描述:公式中的直线方程为Ax+By+C=0,点P的坐标为(x0,y0)。原创 2020-08-29 19:25:52 · 1075 阅读 · 1 评论