【AI科普】Prompt Engineering基础

一、Prompt Engineering概述

LLM?

在正式进入Prompt Engineering之前,先简单介绍一下什么是LLM
LLM - Large Language Model – 大语言模型

  • 基于深度学习技术,特别是Transformer架构实现的大语言模型,旨在理解和生成人类语言
  • 基于大规模文本数据的训练,能够生成自然语言文本、理解语言的语义和语法结构
  • 信息检索领域中,可以改进搜索引擎,能更轻松、准确找到搜索信息

Prompt?

Prompt即提示词

  • 含义:在LLM中,用户向模型提供输入文本或指令,用于引导模型生成特定的响应或执行特定的任务,让模型根据输入的内容产生符合用户需求的输出

举例来说,Prompt(提示词)就像你给AI的任务纸条,就像你叫朋友帮忙时说的话:
点外卖场景
👉 你对朋友说:“帮我点份不加香菜的牛肉面” → 这就是一个Prompt
👉 AI就像这个朋友,你给的细节越清楚(“不加香菜”),结果越合你心意
导航场景
👉 你问:“怎么去最近的星巴克?” → 这个提问就是Prompt
👉 如果改成:“走路10分钟内能到的星巴克,要有充电插座的” → 结果更精准
发朋友圈场景
👉 你让AI:“写段生日文案,要搞笑风格,带emoji” → 这就是高级Prompt
👉 如果只说:“写生日文案” → AI可能给你千篇一律的结果

Prompt Engineering?

针对特定任务构造能充分发挥大模型能力Prompt的技巧,设计有效的提示词以指导模型执行期望任务的方法被称为Prompt Engineering(提示词工程)。
合理的Prompt设计极大地决定了LLM生成结果质量的上限与下限:
✅ 好Prompt = 给AI明确的GPS坐标
❌ 烂Prompt = 让AI在迷宫里乱转

基本要素

  • 指令:想要模型执行的特定任务或指令
  • 上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应
  • 输入数据:用户输入的内容或问题
  • 输出指示:指定输出的类型或格式

基本原则

  • 编写的指令要具体、清晰
  • 复杂问题,让模型多思考,引导模型思考

应用场景

  • 信息检索:问题解答、事实查询、概念解释等。但需要注意幻觉问题,即LLM模型会生成些看似真实但虚假的信息,需要辨别真伪。
  • 内容生成:翻译与润色、自动摘要;代码生成、测试用例生成、需求文档生成等
  • 信息推断:信息提取、主题推断、信息解读(代码、报告、论文等)
  • 交互模拟:聊天机器人、虚拟助手

二、Prompt Engineering-示例

  • 可以使用命令来指示模型执行各种简单任务,例如“编写”、“总结”、“翻译”等简单、明确词汇,从而为各种简单任务设计有效的提示。
  • 对于特定用例和任务,可以进行大量实验以找出最有效的方法。以不同的关键词,上下文和数据试验不同的指令,以找到最适合的Prompt指令。

个人比较常用的方法

角色设定
给AI描述一个特定的身份,以引导大模型回答我们接下来的问题。

比如,在构建个人心理咨询师的时候,我会以一段这样的prompt作为开头:你现在是一位具有丰富经验的心理咨询师,请结合心理学的知识与我对话,你可以和我聊三观等内容,充分了解分析我是一个什么样的人,根据我的需求,跟我进行后续的对话。

实测在Deepseek上表现很不错,个人较偏好,deepseek的回答会让我觉得说到了点子上;chatgpt和其他模型,用相同的prompt都只会给我一些泛泛的回复,诸如冥想、深呼吸等意料之内的回答。

分步引导
在prompt中,给出具体的步骤,以引导大模型,比如说用于写python代码。

示例:
你是一位具有丰富经验的测试开发工程师。
请用python处理Excel数据,分三步:

  1. 读取data.xlsx第二个sheet
  2. 计算每个部门的平均公示
  3. 生成柱状图保存为png
    在这里插入图片描述
    分步引导的方法,在使用Cursor写代码的时候,也是一个非常实用的技巧。

三、幻觉问题

另外,还需要注意的一点就是离不开的幻觉问题
大模型生成的内容,很多时候都沾点幻觉问题。作为科普文章,再在这里简单介绍一下幻觉问题吧。
幻觉(Hallucination),指的是模型生成不准确或虚构的信息。比如,模型可能会编造不存在的参考文献,或者错误的事实。

  • 无中生有
    问AI:请推荐几本关于火星探险的小说。
    AI可能回答:《红色风暴》是2022年获得雨果奖的火星探险神作,作者约翰 史密斯…
    可实际上,这本书并不存在,但是大模型却说的有鼻子有眼,甚至编造了获奖信息和作者,让人觉得可信度很高。
  • 张冠李戴
    像背混了知识点:水的沸点是60度(实际上是100度,且根据气压不同,沸点也不同),或者李白是宋朝诗人(实际上是唐朝)
    这些错误看似合理,但实际混淆了事实。
    说到这个我就想到之前别人用deepseek弄的段子。乐得…

用户:直角90度,开水100度,所以开水是钝角
Deepseek:你爹血压180,所以你爹是量角器

好了回到正题,为什么会这样呢?
这就要我们会想到AI的本质,其实是在玩“文字接龙”
它不判断真假,只是根据概率拼出最像人类会说的句子。就像你让一个背了百科全书,但没上过学的人写论文,他可能会把不同知识点胡乱组合。

简单来说,幻觉问题就是AI给我们编虚假的东西。因此,在面对AI生成的东西的时候,我们要带有判别能力去审视,当下的AI并非全能。
如何解决这个问题,就要涉及到RAG知识库、微调等方法了,在之后的文章里,再进行科普讲解。

最后

用于日常的、不涉及复杂逻辑的,使用以上技巧其实已经足够。
更多的技巧,比如说设定好输入输出格式,利用CoT等,后续再进行更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值