深度学习_GAN_初始GAN原理及相关知识详解

生成对抗网络(GAN,Generative adversarial network)自从2014年被Ian Goodfellow提出以来,掀起了一股研究热潮。所以GAN的相关原理知识对我们的学习,研究和工作非常有价值。以下,enjoy:

一.GAN基本概念

GAN的主要思想:

GAN由生成器和判别器组成,生成器负责生成样本,判别器负责判断生成器生成的样本是否为真。生成器要尽可能迷惑判别器,而判别器要尽量区分生成器的样本和真实样本。

在原始GAN的论文中,作者将生成器比喻为印假钞的犯罪分子,判别器则类比为警察。犯罪分子努力让钞票看起来逼真,警察则不断提升对于假钞的识别能力。二者相互博弈,随着时间的进行,都会越来越强。那么类比于图像生成任务,生成器不断生成尽可能逼真的假图像。判别器则判断图像是真实的图像还是生成的图像,二者不断博弈优化。最终生成器生成的图像使得判别器完全无法判别真假。

GAN的框架示意图:

在这里插入图片描述

上述的框架左边是生成器G,其输入是z,对于原始的GAN,z是由高斯分布随机采样得到的噪声。噪声z通过生成器得到了生成的假样本。生成的假样本与真实样本放到一起,被随机抽取送入到判别器D,由判别器区分输入的样本是生成的假样本还是真实的样本。整个过程简单明了,生成对抗网络中的“生成对抗”主要体现在生成器和判别器之间的对抗。

GAN的目标函数:

对于GAN网络模型,如果想要学习其参数,首先需要定义一个目标函数。
GAN的目标函数如下:
在这里插入图片描述

接下来我们详解介绍这个函数的意义:
在这里插入图片描述

GAN的目标函数和交叉熵的关系:

判别器的目标函数写成离散形式即为:
在这里插入图片描述

可以看出,目标函数和交叉熵是一致的,即判别器的目标是最小化交叉熵损失,生成器的目标是最小化生成数据分布和真实数据分布的JS散度

GAN的Loss特点:

对于很多GAN的初学者在实践过程中很可能会感到疑惑,为什么GAN的Loss一直降不下去。GAN到底什么时候才算收敛?其实,作为一个训练良好的GAN,其Loss就是降不下去的。衡量GAN是否训练好了,只能由人肉眼去看生成的图片质量是否好。不过,对于没有一个很好的评价是否收敛指标的问题,有很多学者都在做研究,比如WGAN中就提出了一种新的Loss设计方式,较好的解决了难以判断收敛的问题。

接下来我们解释一下为什么GAN的Loss降不下去:
对判别器而言,GAN的Loss如下:
在这里插入图片描述

从上面的式子中可以看出,生成器和判别器的目的相反,也就是说两个生成器网络和判别器网络互为对抗,此消彼长。不可能Loss一直讲到一个收敛的状态。

  1. 对于生成器,其Loss下降快,很有可能是判别器太弱,导致生成器很轻易的就“愚弄”了判别器。
  2. 对于判别器,其Loss下降快,意味着判别器很强,判别器很强说明生成器生成的图像不够逼真,才使得判别器轻易判别,导致Loss下降很快。

总结: 无论是判别器还是生成器,Loss的高低不能代表生成器的好坏。一个好的GAN网络,其GAN Loss往往是不断波动的。

值得一提的是,WGAN提出了一种新的Loss度量方式,让我们可以通过一定的手段来判断模型是否收敛。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Rocky Ding*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值