Darknet框架优化介绍

本文介绍了DarkNet,一个基于C语言并支持CUDA的人工智能框架,特别关注其在图像识别中的应用,包括YOLO算法的原理。同时,涵盖了makefile在项目管理中的自动化编译优势,以及程序优化的基本步骤。
摘要由CSDN通过智能技术生成

一、DarkNet框架简介

1.DarkNet的简介

Darknet是一个完全使用C语言编写的人工智能框架,可以使用CUDA的开源框架。主要应用于图像识别领域。
它具有可移植性好,安装间接,查看源码方便等优势,提供了OpenCV等附加选项,还可以便捷的从底层逻辑代码进行修改优化等优点

【这是它的官网主页】
这是他的官网主页
具体的安装使用教程在阿里云社区有详细的介绍
DL框架之darknet:深度学习框架darknet的简介、安装、使用方法的详细攻略(来自阿里云开发者社区)

2.DarkNet部分相关技术知识

darknet其实就是yolo作者编写的一个框架,那么我们简单地来看看YOLO这个经久不衰还一直在更新的经典目标检测的算法。
在这里插入图片描述
YOLO算法中用到了多层卷积的方案
在这里插入图片描述
darknet中的关键算法——im2col支撑起了darknet中的卷积计算
在这里插入图片描述
那么什么是卷积呢,学过信号与系统或者对机器学习稍微入了点门的都知道。以下是一个简单的讲解,当然还可以看我很喜欢的一个up主梗直哥的视频来更全面的了解【卷积】直观形象的实例,10分钟彻底搞懂
在这里插入图片描述
一般的图像都是三通道的,故而一般至少要三个卷积核。卷积核向量组成的矩阵与图像信息矩阵进行运算,所以YOLO中的计算大多都是矩阵乘矩阵
在这里插入图片描述

二、动手过程中掌握的新知识

1.解压tar包

tar –xvf file.tar 解压 tar包
tar -xzvf file.tar.gz 解压tar.gz
tar -xjvf file.tar.bz2 解压 tar.bz2
linux tar 解压命令总结

2.makefile文件

在学习过程中认识到makefile的重要性,它就像我们在github上copy(啊不是……借鉴)项目的时候最喜欢的requirement.txt。引用我学习的文章中的一句话 “makefile带来的好处就是——“自动化编译”,一旦写好,只需要一个make命令,整个工程完全自动编译,极大的提高了软件开发的效率。”
跟我一起写 Makefile(一)。作者:haoel

3.程序优化步骤

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值