【MWORKS专业工具箱系列教程】控制系列工具箱第八期:交互式控制系统设计APP

本工具箱教程以控制系统模型创建、分析与设计流程为主线,通过大量示例介绍MWORKS控制系统工具箱的功能和具体使用。共计10篇文章,上一篇主要介绍了PID控制器设计。

本教程代码均可直接复制到Syslab中运行,使用教程中代码前需参照下述方法加载函数库内容: 方法一:在Syslab的命令行窗口先后输入using TyControlSystems和using TyPlot并回车(重启软件或命令行窗口后需重新输入); 方法二:按照下图中的方法预加载函数库(设置好后每次启动软件默认加载)。


第八期:交互式控制系统设计APP

一、什么是控制系统设计APP?

经典控制理论有两大核心设计方法,分别是频率响应法和根轨迹法。控制系统设计器APP让用户可以使用交互式的波特图编辑器、根轨迹编辑器来添加、修改和删除控制器的极点、零点和增益,从而实现基于这两大方法的控制器设计和分析。

控制系统设计器APP支持用户自定义绘制阶跃、脉冲、波特、奈奎斯特及尼克尔斯图,通过交互式对话框的方式实现对控制器的设计,并且各绘图窗口会实时进行更新重绘,将控制器效果进行直观展示。相比传统的代码实现方式大大减少了计算、编程及后处理等所需要的时间。

二、经典控制理论核心设计方法

频率响应法: 主要应用bode图进行设计,通常的方法是先调整系统的开环增益以满足对稳态精度的要求。根据伯德图的幅值曲线和相角曲线获取幅值裕度、相角裕度、穿越频率、带宽等指标信息来为系统设计相应的校正装置;

根轨迹法: 用根轨迹法进行设计,是建立在改变系统根轨迹的基础上的,它是通过在系统开环传递函数中增加极点和零点,迫使根轨迹经过s平面内希望的闭环极点的一种方法。在设计控制系统时,如果通过改变系统增益无法实现控制要求,则必须通过引入适当的校正装置来改变原来的根轨迹。利用根轨迹法进行控制系统设计的实质是通过校正装置改变系统的根轨迹,从而使一对主导闭环极点位于需要的位置上。

本期内容基于控制系统设计器APP来展示如何利用根轨迹法进行控制器设计,并详细讲解APP应用流程。

三、控制系统设计器APP的应用

本期内容将以具体实例为基础,从“启动APP”到“指标验证”全流程的讲解控制系统设计器APP的具体使用方法:

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值