高等代数(九)-欧几里得空间02:标准正交基

本文讨论了欧几里得空间中的正交基和标准正交基的概念。正交向量组是线性无关的,并且在n维欧氏空间中最多有n个两两正交的非零向量。标准正交基是由n个单位正交向量组成。通过施密特正交化过程,可以从任意基转换为标准正交基,过渡矩阵为正交矩阵。正交矩阵的性质是其转置矩阵同时也是其逆矩阵。
摘要由CSDN通过智能技术生成

§ 2 标准正交基
定义 5 欧氏空间 V V V
中一组非零的向量,如果它们两两正交,就称为一正交向量组.
应该指出,按定义,由单个非零向量所成的向量组也是正交向量组. 当然,
以下讨论的正交向量组都是非空的.
不难证明,正交向量组是线性无关的. 事实上,设正交向量组
α 1 , α 2 , ⋯   , α m \alpha_{1}, \alpha_{2}, \cdots, \alpha_{m} α1,α2,,αm 有一线性关系
k 1 α 1 + k 2 α 2 + ⋯ + k m α m = 0. k_{1} \boldsymbol{\alpha}_{1}+k_{2} \boldsymbol{\alpha}_{2}+\cdots+k_{m} \boldsymbol{\alpha}_{m}=\mathbf{0} . k1α1+k2α2++kmαm=0.
α i \alpha_{i} αi 与等式两边作内积,即得
k i ( α i , α i ) = 0. k_{i}\left(\boldsymbol{\alpha}_{i}, \boldsymbol{\alpha}_{i}\right)=0 . ki(αi,αi)=0.
α i ≠ 0 \alpha_{i} \neq 0 αi=0, 有 ( α i , α i ) > 0 \left(\alpha_{i}, \alpha_{i}\right)>0 (αi,αi)>0, 从而
k i = 0 ( i = 1 , 2 , ⋯   , m ) k_{i}=0(i=1,2, \cdots, m) ki=0(i=1,2,,m). 这就证明了
α 1 , α 2 , ⋯   , α m \alpha_{1}, \alpha_{2}, \cdots, \alpha_{m} α1,α2,,αm 是线性无关的.
这个结果说明,在 n n n 维欧氏空间中,两两正交的非零向量不能超过 n n n 个.
这个事实的几何意义是清楚的. 例如, 在平面上找不到 3 个两两垂直的非零向量;
在空间中, 找不到 4 个两两垂直的非零向量.
从解析几何中看到,直角坐标系在图形度量性质的讨论中有特殊的地位.
在欧氏空间中,情况是相仿的.
定义 6 在 n n n 维欧氏空间中, 由 n n n 个向量组成的正交向量组称为正交基;
由单位向量组成的正交基称为标准正交基.
对一组正交基进行单位化就得到一组标准正交基.
ε 1 , ε 2 , ⋯   , ε n \varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{\mathrm{n}} ε1,ε2,,εn
是一组标准正交基,由定义,有
( ε i , ε j ) = { 1 , i = j , 0 , i ≠ j . \left(\boldsymbol{\varepsilon}_{i}, \boldsymbol{\varepsilon}_{j}\right)=\left\{\begin{array}{ll} 1, & i=j, \\ 0, & i \neq j . \end{array}\right. (εi,εj)={ 1,0,i=j,i=j.
显然,(1)式完全刻画了标准正交基的性质.换句话说,一组基为标准正交基的充分必要条件是:
它的度量矩阵为单位矩阵. 因为度量矩阵是正定的,
根据第五章关于正定二次型的结果,正定矩阵合同于单位矩阵.这说明在 n n n
维欧氏空间中存在一组基,它的度量矩阵是单位矩阵. 由此可以断言, 在 n n n
维欧氏空间中, 标准正交基是存在的.
在标准正交基下,向量的坐标可以通过内积简单地表示出来,即
α = ( ε 1 , α ) ε 1 + ( ε 2 , α ) ε 2 + ⋯ + ( ε n , α ) ε n . \boldsymbol{\alpha}=\left(\varepsilon_{1}, \boldsymbol{\alpha}\right) \varepsilon_{1}+\left(\varepsilon_{2}, \boldsymbol{\alpha}\right) \varepsilon_{2}+\cdots+\left(\varepsilon_{n}, \boldsymbol{\alpha}\right) \varepsilon_{n} . α=(ε1,α)ε1+(ε2,α)ε2++(εn,α)εn.
事实上,设
α = x 1 ε 1 + x 2 ε 2 + ⋯ + x n ε n . \alpha=x_{1} \varepsilon_{1}+x_{2} \varepsilon_{2}+\cdots+x_{n} \varepsilon_{n} . α=x1ε1+x2ε2++xnεn.
ε i \varepsilon_{i} εi 与等式两边作内积,即得
x i = ( ε i , α ) , i = 1 , 2 , ⋯   , n . x_{i}=\left(\boldsymbol{\varepsilon}_{i}, \boldsymbol{\alpha}\right), \quad i=1,2, \cdots, n . xi=(εi,α),i=1,2,,n.
在标准正交基下, 内积有特别简单的表达式.设
α = x 1 ε 1 + x 2 ε 2 + ⋯ + x n ε n , β = y 1 ε 1 + y 2 ε 2 + ⋯ + y n ε n . \boldsymbol{\alpha}=x_{1} \boldsymbol{\varepsilon}_{1}+x_{2} \boldsymbol{\varepsilon}_{2}+\cdots+x_{n} \boldsymbol{\varepsilon}_{n}, \quad \boldsymbol{\beta}=y_{1} \boldsymbol{\varepsilon}_{1}+y_{2} \varepsilon_{2}+\cdots+y_{n} \varepsilon_{n} . α=x1ε1+x2ε2++xnεn,β=y1ε1+y2ε2++ynεn.
那么
( α , β ) = x 1 y 1 + x 2 y 2 + ⋯ + x n y n = X T Y . (\boldsymbol{\alpha}, \boldsymbol{\beta})=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y} . (α,β)=x1y1+x2y2++xnyn=XTY.
这个表达式正是几何中向量的内积在直角坐标系中坐标表达式的推广.
应该指出,内积的表达式 (3), 对于任一组标准正交基都是一样的.
这就说明了,所有的标准正交基, 在欧氏空间中有相同的地位. 在下一节,
这一点将得到进一步的说明.
下面我们将结合内积的特点来讨论标准正交基的求法.
定理 1 n 1 n 1n 维欧氏空间中任一个正交向量组都能扩充成一组正交基.
证明 设
α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} α1,α2,,αm
是一正交向量组,我们对 n − m n-m nm 作数学归纳法.
n − m = 0 n-m=0 nm=0 时,
α 1 , α 2 , ⋯   , α m \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m} α1,α2,,αm
就是一组正交基了.
假设 n − m = k n-m=k nm=k 时定理成立, 也就是说, 可以找到向量
β 1 , β 2 , ⋯   , β k \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{k} β1,β2,,βk,
使得
α 1 , α 2 , ⋯   , α m , β 1 , β 2 , ⋯   , β k \boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \cdots, \boldsymbol{\alpha}_{m}, \boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{k} α1,α2,,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值