在DataFrame中新建列赋值后全部为NaN的问题释疑

       在pandas中,有时候我们对一个df以如下方式新创建一个列,然后用一个Series赋值给新建的列,但是发现得到的新列的值全部为NaN,这是什么原因呢?

df['newColumn']=df_other['otherColumn']

       注意以上赋值方式中,等号右边为一个Series,这时就需要考虑这个Series的index和df的index是否一致,如果不一致,那么就会造成在不一致的索引上的值全部为NaN,所以这个问题就是由Series赋值,索引不一致造成的。因为Series本身就带有索引,赋值时,还会同时按顺序进行两者的索引匹配,只有索引匹配上的行才会成功赋值,而没有匹配上的就会为NaN。

       当我们不想要这种匹配,只想直接把df_other['otherColumn']的值赋给df['newColumn']时,只需去掉索引即可,可以通过list(df_other['otherColumn'])或者df_other['otherColumn'].values等方式进行转化,这样就可以避免这个问题。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值