机器学习|二项分布(贝努里概型、二项分布的泊松近似,正态近似)|10mins入门|概统学习笔记(五)

二项分布

1.贝努里概型
  • 定义:n次独立重复试验称作n重贝努里试验,每次试验成功的概率都是p,失败的概率都是q=1-p

  • 内容:

    用X表示n重贝努里试验中事件A(成功)出现的次数,则
    P ( X = k ) = C n k p k ( 1 − p ) n − k , k = 0 , 1 , . . . , n P(X=k)=C_n^kp^k(1-p)^{n-k},k=0,1,...,n P(X=k)=Cnkpk(1p)nk,k=0,1,...,n
    不难验证:
    a . P ( X = k ) ≥ 0 b . ∑ k = 0 n P ( X = k ) = 1 a.P(X=k)\geq0 \\ b.\sum_{k=0}^nP(X=k)=1 a.P(X=k)0b.k=0nP(X=k)=1

  • 二项分布

    • r . v X r.v X r.vX服从参数为n和p的二项分布,记作X~B(n,p)

    • 二项分布描述的是n重贝努里试验中出现“成功”次数X的概率分布

    • 图形特点:对于固定n及p,当k增加时,概率P(X=k)先是增加至达到最大值,随后单调减少。

      • 当(n+1)p不为整数时,二项概率 P ( X = k ) P(X=k) P(X=k) k = [ ( n + 1 ) p ] k=[(n+1)p] k=[(n+1)p]达到最大值。

        ([x]表示不超过x的最大整数)

      • 当(n+1)p为整数时,二项概率 P ( X = k ) P(X=k) P(X=k) k = ( n + 1 ) p k=(n+1)p k=(n+1)p k = ( n + 1 ) p − 1 k=(n+1)p-1 k=(n+1)p1达到最大值。

    • 当n=1时, P ( X = k ) = p k ( 1 − p ) , k = 0 , 1 P(X=k)=p^k(1-p),k=0,1 P(X=k)=pk(1p),k=0,1。称X服从0-1分布

在这里插入图片描述

  • 使用条件:

    • 每次试验条件相同

    • 每次试验只考虑两个互逆结果 A A A A ‾ \overline A A,且 P ( A ) = p , P ( A ‾ ) = 1 − p P(A)=p,P(\overline A)=1-p P(A)=p,P(A)=1p

    • 各次试验相互独立

2. 二项分布的泊松近似
  • 背景:当试验次数n很大时,计算二项概率变得很麻烦。

    • 如1000件产品,只有一件次品,要求有放回地抽5000次,其中至少5次出现次品的概率。

      则要计算
      P ( X > 5 ) = ∑ k = 6 5000 P ( X = k ) = ∑ k = 6 5000 C 5000 k ( 1 1000 ) k ( 999 1000 ) 5000 − k P(X>5)=\sum^{5000}_{k=6}P(X=k)=\sum^{5000}_{k=6}C^k_{5000}(\frac{1}{1000})^k(\frac{999}{1000})^{5000-k} P(X>5)=k=65000P(X=k)=k=65000C5000k(10001)k(1000999)5000k
      因此必须寻求近似方法,由此引入二项分布的泊松近似

  • 泊松定理

    λ \lambda λ是一个正整数, p n = λ n p_n=\frac{\lambda}{n} pn=nλ,则有
    l i m n → ∞ C n k p n k ( 1 − p n ) n − k = e − λ λ k k ! ,   k = 0 , 1 , 2 , . . . lim_{n\to \infty}C_n^kp_n^k(1-p_n)^{n-k}=e^{-\lambda}\frac{\lambda^k}{k!},\space k=0,1,2,... limnCnkpnk(1pn)nk=eλk!λk, k=0,1,2,...
    定理的条件意味着当n很大时, p n p_n pn必定很小。因此,泊松定理表明,当n很大,p很小时有以下近似式:
    C n k p n k ( 1 − p n ) n − k ≈ e − λ λ k k ! ,   λ = n p C_n^kp_n^k(1-p_n)^{n-k}\approx e^{-\lambda}\frac{\lambda^k}{k!}, \space \lambda=np Cnkpnk(1pn)nkeλk!λk, λ=np
    实际计算中, n ≥ 100 , n p ≤ 10 n\geq 100,np\leq 10 n100,np10时近似效果就很好。

3. 二项分布的正态近似
  • 定理(棣莫佛-拉普拉斯定理)

    设随机变量 Y n Y_n Yn服从参数 n , p ( 0 < p < 1 ) n,p(0<p<1) n,p(0<p<1)的二项分布,则对任意x,有
    l i m n → ∞ P { Y n − n p n p ( 1 − p ) ≤ x } = ∫ − ∞ x 1 2 π e x p ( − t 2 2 ) d t lim_{n\to \infty}P\{\frac{Y_n-np}{\sqrt{np(1-p)}}\leq x\}=\int_{-\infty}^x\frac{1}{\sqrt{2\pi}}exp(-\frac{t^2}{2})dt limnP{np(1p) Ynnpx}=x2π 1exp(2t2)dt
    当n很大, 0 < p < 1 0<p<1 0<p<1是一个定值时,或者说, n p ( 1 − p ) np(1-p) np(1p)也不太小时,二项变量 Y n Y_n Yn的分布近似正态分布 N ( n p , n p ( 1 − p ) ) N(np,np(1-p)) N(np,np(1p)).

    实用中, n ≥ 30 n\geq30 n30, n p ≥ 10 np\geq 10 np10时,正态近似的效果较好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值