Helmholtz方程在球坐标系下的变量分离及Legendre方程的导出 | 特殊函数(三) |偏微分方程(二十五)

在球坐标曲面所围区域上讨论问题时,自然应采用求坐标 ( r , θ , φ ) (r,\theta,\varphi) (r,θ,φ),此时 L a p l a c e Laplace Laplace算子
Δ 3 = 1 r 2 ∂ ∂ r ( r 2 ∂ ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 ∂ φ 2 \Delta_3=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial}{\partial r})+\frac{1}{r^2sin\theta}\frac{\partial}{\partial \theta}(sin\theta\frac{\partial }{\partial \theta})+\frac{1}{r^2sin^2\theta}\frac{\partial^2}{\partial \varphi^2} Δ3=r21r(r2r)+r2sinθ1θ(sinθθ)+r2sin2θ1φ22
v ( r , θ , φ ) = R ( r ) Θ ( θ ) Φ ( φ ) v(r,\theta,\varphi)=R(r)\Theta(\theta)\varPhi(\varphi) v(r,θ,φ)=R(r)Θ(θ)Φ(φ),代入Helmholtz方程(1),两边同除以 R Θ Φ R\Theta \varPhi RΘΦ,有
1 r 2 ( r 2 R ′ ) ′ R + 1 r 2 [ 1 s i n θ ( s i n θ Θ ′ ) ′ Θ + 1 s i n 2 θ Φ ′ ′ Φ ] + k 2 = 0 \frac{\frac{1}{r^2}(r^2R')'}{R}+\frac{1}{r^2}[\frac{1}{sin\theta}\frac{(sin\theta\Theta')'}{\Theta}+\frac{1}{sin^2\theta}\frac{\varPhi''}{\varPhi}]+k^2=0 Rr21(r2R)+r21[sinθ1Θ(sinθΘ)+sin2θ1ΦΦ]+k2=0
逐层剥离,得常微分方程
Φ ′ ′ + μ Φ = 0 1 s i n θ ( s i n θ Θ ′ ) ′ + ( λ − μ s i n 2 θ ) Θ = 0 ( 6 ) 1 r 2 ( r 2 R ′ ) ′ + ( k 2 − λ r 2 ) R = 0 ( 7 ) \varPhi''+\mu\varPhi=0 \\ \frac{1}{sin\theta}(sin\theta \Theta')'+(\lambda-\frac{\mu}{sin^2\theta})\Theta=0 \quad(6)\\ \frac{1}{r^2}(r^2R')'+(k^2-\frac{\lambda}{r^2})R=0 \quad (7) Φ+μΦ=0sinθ1(sinθΘ)+(λsin2θμ)Θ=0(6)r21(r2R)+(k2r2λ)R=0(7)
其中,方程(7)称为球Bessel方程,可转化为Bessel方程。特别地,当 k = 0 k=0 k=0(Laplace方程)时,(7)式为Euler方程
r 2 R ′ ′ + 2 r R ′ − λ R = 0 r^2R''+2rR'-\lambda R=0 r2R+2rRλR=0
关于 Θ ( θ ) \Theta(\theta) Θ(θ)的方程(6),经变量代换 x = c o s θ x=cos\theta x=cosθ,并记 y ( x ) = Θ ( a r c c o s x ) , μ = m 2 y(x)=\Theta(arccosx),\mu=m^2 y(x)=Θ(arccosx),μ=m2,可改写为S-L型方程
[ ( 1 − x 2 ) y ′ ] ′ + ( λ − m 2 1 − x 2 ) y = 0 [(1-x^2)y']'+(\lambda-\frac{m^2}{1-x^2})y=0 [(1x2)y]+(λ1x2m2)y=0
称为m阶伴随勒让德(Legendre)方程。特别地,当m=0时,方程
[ ( 1 − x 2 ) y ′ ] ′ + λ y = 0 [(1-x^2)y']'+\lambda y=0 [(1x2)y]+λy=0
称为Legendre方程

Bessel方程和Legendre方程都是变系数二阶线性常微分方程,它们的解Bessel函数和Legendre多项式是重要的特殊函数。

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值