单应性变化和单应性矩阵

单应性变化:

什么是单应性?

https://blog.csdn.net/czl389/article/details/67689625

图像中的2D点(x,y)(x,y)可以被表示成3D向量的形式(x1,x2,x3)(x1,x2,x3),其中x=x1/x3x=x1/x3,y=x2/x3y=x2/x3。它被叫做点的齐次表达,位于投影平面P2上。所谓单应就是发生在投影平面P2P2上的点和线可逆的映射。其它叫法包括射影变换、投影变换和平面投影变换等。 单应变换矩阵是一个3*3的矩阵H。这个变换可以被任意乘上一个非零常数,而不改变变换本身。所以它虽然具有9个元素,但是具有8个自由度。这意味这它里面有8个未知参数待求。 典型地,可以通过图像之间的特征匹配来估计单应矩阵。

 单应性变化讲解:

https://www.learnopencv.com/homography-examples-using-opencv-python-c/

https://blog.csdn.net/xuyangcao123/article/details/70916767

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值