[论文精读]Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From -

论文全名:Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI

论文网址:Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI | IEEE Journals & Magazine | IEEE Xplore

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Materials

2.3.1. Data Information

2.3.2. Imaging Preprocessing

2.4. Multi-Scale Brain-Behavior Relationship

2.5. Multi-Scale FC Based Multi-Order Graph Convolutional Network

2.5.1. Multi-Scale Functional Connectivity Estimation

2.5.2. Multi-Order Graph Convolutional Network

2.5.3. Adaptive Feature Fusion

2.5.4. Behavior Score Estimation

2.6. Implementation

2.6.1. Model Settings and Evaluation Metric

2.6.2. Compared Methods

2.7. Results and Discussion

2.7.1. Comparison of FC-Behavior Relationship Between Different Scales

2.7.2. Parameter Analysis

2.7.3. Comparison With Other Methods

2.7.4. Ablation Study

2.7.5. Importance of Functional Connectivity

2.8. Conclusion

3. 知识补充

3.1. FDR correction

4. Reference 


1. 心得

(1)公式中notation的上下标多得令人不适...虽然没什么问题,而且也易懂,就是看上去太大一坨了哈哈哈哈哈

(2)Trainable parameter实在是有点多hhhh,可能会跑得久一点的亚子

(3)怎么老是定义函数啊,直接写出来名字或者数学表达也不是不行

(4)虽然没有代码,但是是较为容易复现的论文

2. 论文逐段精读

2.1. Abstract

        ①They proposed a Multi-Scale FC-based Multi-Order GCN (MSFC-MO-GCN)

        ②⭐There are few researches on behaviour prediction

2.2. Introduction

        ①作者认为“GCN仅根据单尺度(即单空间分辨率)FCN 学习大脑连接表示”。持否定意见,也有使用GCN+超图的或GCN+不同脑图谱,而且有时候其他尺度来源于模态,受到了数据集本身的限制

        ②作者认为“图卷积层只利用了来自节点的 1 阶邻居的潜在信息,忽略了脑区之间远距离功能交互产生的丰富信息”。持否定意见,这取决于脑网络如何构建。一个全连接的脑网络不存在“近端脑区”或“远端脑区”

        ③作者认为“例如,在具有粗粒度类的分类任务中,高阶近似可能比低阶近似更有用”。感觉高阶近似大概率都比低阶近似好吧?大家不都是为了简化模型流程以及降低运算时间吗?

        ④Thus, they proposed a Multi-Scale FC based Multi-Order GCN (MSFC-MO-GCN)

lattice  n. 格子木架,格子金属架,格栅(用作篱笆等);斜条结构;斜格图案

granularity  n. 粒度;(颗,成)粒性
 

2.3. Materials

2.3.1. Data Information

        ①Dataset: HCP S1200

        ②Screen criterion: no neuropsychiatric disorders

        ③Experimental design: staring the bright cross-hair on a dark background with relaxed state and eyes open

        ④Samples: 805

        ⑤5 tasks chosen: one motor-related test (Endurance), one executive-function-related test (Cognitive Flexibility), one memory-related test (Episodic Memory), one language-related test (Story Difficulty Level), and a comprehensive cognitive test (Fluid Intelligence)

        ⑥Measurement: NIH Cognition Battery toolbox

        ⑦Score adjustment: using NIH National Norms toolbox to adjust all the scores to a standard deviation

2.3.2. Imaging Preprocessing

        ①Minimal preprocessing pipeline: HCP fMRIvolume

        ②Pre-processing process: 1) gradient distortion correction, 2) head motion correction, 3) EPI distortion correction, 4) registration to the Montreal Neurological Institute (MNI) space, 5) intensity normalization to a global mean, and 6) masking out non-brain voxels

        ③Artifact removal: independent component analysis (ICA) based FIX Xnoiseifier

2.4. Multi-Scale Brain-Behavior Relationship

        ①Atlas: Schaefer 100, 500 and 1k

        ②FCN construction: Pearson correlation

        ③Connections: all the negative connections are set to 0 and only remains the top 5% high value 

        ④System-level analysis: 7 functional subsystems, visual network (VIS), somatosensory-motor network (SM), attention network (ATT), salience network (SAL), limbic system (LIM), frontoparietal network (FP), and default mode network (DMN), with left and right brain, obtaining 14 regions overall.

        ⑤Calculating the Pearson correlation between each network and applying FDR correction

        ⑥CS matrix: The diagonal of the matrix represents the CS between systems and behaviors, while non diagonal values represent the FC between systems and CS between behaviors

2.5. Multi-Scale FC Based Multi-Order Graph Convolutional Network

        ①Overall framework:

2.5.1. Multi-Scale Functional Connectivity Estimation

        ①Sparsify: only remain 5 strong edges for each node for ensuring the connectivity of the graph(为什么又说“仅保留值最高的5%边缘”,又说“每个节点保留五个最强边?“但不是总共就14个节点吗...)

        ②Scales of one graph: G=\{G^{1},G^{2},\ldots,G^{M}\}

2.5.2. Multi-Order Graph Convolutional Network

        ①Graph for the n-th subject: G_{n}=\{G_{n}^{1},G_{n}^{2}, \ldots, G_{n}^{M}.\}

        ②Graph at the m-th scale: G_n^m=(V_n^m,A_n^m,X_n^m)

(1)Multi-Order Graph Convolution Layer

        ①Multi-order aggregation(这个只卷积了一次,是一个人的其中一个scale(atlas),三个颜色是指邻居阶数的不同。作者定义几阶的邻接矩阵就是把原始的邻接矩阵乘阶数的次幂,0阶的时候是单位矩阵):

        ②Node feature (X_n^m)^i\in\mathbb{R}^{|V_n^m|\times d_i}

        ③Graph convolution operator:

(X_n^m)^{(i+1)}=\parallel _{0\leq k\leq K}\sigma((\widetilde{A}_n^m)^k(X_n^m)^iW_k^i)

and the define \sigma as ReLU......非常独特的消息传递方式......

        ④\widetilde{A}_n^m=(\widetilde{D}_n^m)^{-\frac12}(A_n^m+I)(\widetilde{D}_n^m)^{-\frac12}

(2)Pooling Layer

        ①The final feature vector can be calculated by:

f_n^m=p(X_n^m)=\frac1{|V_n^m|}\sum_{v=1}^{|V_n^m|}(x_v)_n^m

(3)Inter-Scale Contrast Constraint

        ①To enhance the similarity between different scales:

L_{inter}=\sum_{m=1}^{M-1}\max\left(Dist\left(f_n^m,f_n^{m+1}\right)-Dist\left(f_n^m,f_s^m\right)+\delta,0\right)

where the features from the same scale are positive term and from different scale are negative term, Dist denotes Euclidean distance between two vectors, \delta denotes margin parameter

2.5.3. Adaptive Feature Fusion

        ①Total feature of subject n:

f_n= \{f_n^1,f_n^2,...,f_n^M \}

        ②Mean pooling to obtain graph representation:

\theta_n^m=h_{\mathrm{Avg}}\left(f_n^m\right)

where h_{\mathrm{Avg}} denotes global average pooling

        ③Contribution weight (attention?):

\varphi_n=g\left(\theta_n\right)=\delta\left(Q\sigma\left(W\theta_n\right)\right)

where W and Q are trainable parameters, \delta is Sigmoid function

        ④Joint/final features for one person:

z_n=\begin{Bmatrix}\varphi_n^1f_n^1,\varphi_n^2f_n^2,\ldots,\varphi_n^Mf_n^M\end{Bmatrix}

2.5.4. Behavior Score Estimation

        ①Behavior score:

\hat{Y}=z_nU

where U denotes trainable parameter

        ②Loss:

L_\text{total }=\alpha L_\text{inter }+L_\text{MAE}

L_{\mathrm{MAE}}=\frac{1}{N}\sum_{i=1}^{N}E\left(y_i,\hat{y}_i\right)

where E denotes absolute error

2.6. Implementation

2.6.1. Model Settings and Evaluation Metric

        ①Filters in 2 GCN: 96 and 12(GCN还有滤波器吗???这什么玩意儿?hidden layer?

        ②12-channel pooling layer and a 1-channel fully connected layer

        ③Optimizer: Adam

        ④Learning rate: 0.005

        ⑤Norm: L2 with 0.0005

        ⑥Cross validation: 5 fold

        ⑦Batch size: 16

        ⑧Iteration times: 70

        ⑨Evaluation: average value in 5 times of 5-fold cross validation

2.6.2. Compared Methods

        ①Hyperparameter setting in each compared method:

(1)Kernel Regression Method

(2)FNN

(3)BrainNetCNN

(4)GCNN

(5)GAT

(6)SAGPool

(7)Meta-RegGNN

(8)BC-GCN-SE

2.7. Results and Discussion

2.7.1. Comparison of FC-Behavior Relationship Between Different Scales

        ①Correlation difference between scales:

so they reckon the brain has a hierarchical structure

2.7.2. Parameter Analysis

        ①Grid search on hyperparameter:

where K=(K_{\mathrm{FCN-100}} , K_{\mathrm{FCN-500}} , K_{\mathrm{FCN-1000}}) denotes the K order in each scale

        ②Fixing \alpha to 1 and further testing the combinations of K:

2.7.3. Comparison With Other Methods

        ①Comparison table:

2.7.4. Ablation Study

        ①Module ablation:

where baseline 1 denotes Single-Scale FCs + Multi-Order Graph Convolution, 2 denotes Multi-Scale FCs + 1-Order Graph Convolution + Inter-Scale Contrast Constraint, and 3 represents Multi-Scale FCs + Multi-Order Graph Convolution

2.7.5. Importance of Functional Connectivity

        ①Applying occlusion importance (OI) in networks (屏蔽某一个网络的特征得到的结果和原始结果的差异):

2.8. Conclusion

        ~

3. 知识补充

3.1. FDR correction

(1)定义:FDR correction,即错误发现率(False Discovery Rate)校正,是一种在多重假设检验中常用的统计校正方法,旨在控制假阳性(false positives)发现的错误率。

(2)方法:FDR是指在拒绝原假设的条件下,拒绝的假设中错误的比例。FDR correction则是一种通过调整统计显著性水平来降低这一比例的方法。FDR是指在拒绝原假设的条件下,拒绝的假设中错误的比例。FDR correction则是一种通过调整统计显著性水平来降低这一比例的方法。

4. Reference 

Wen, X. et al. (2024) 'Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI', IEEE Transactions on Neural Systems and Rehabilitation Engineering , 32: 548-558. doi:  10.1109/TNSRE.2024.3357059

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值