详解 F1 Score,P-R,ROC,AUC

一、混淆矩阵(confusion matrix)

对于二分类问题来说,可将样例根据其真实类别与模型预测类别的组合划分为真正例(true positive)、假正例(false positive)、真反例(true negative)、假反例(false negative)四种情况,其混淆矩阵(confusion matrix)如下:

预测值(正例)预测值(反例)
真实值(正例)TP(真正例)FN(假反例)
真实值(反例)FP(假正例)TN(真反例)
  • TP(True Positives,真正例):预测为正,真实为正, 预测对了
  • FN (False Negatives,假反例):预测为反,真实为正,预测错了
  • FP(False Positives,假正例):预测为正,真实为反,预测错了
  • TN(True Negatives,真反例):预测为反,真实为反,预测对了

显然有,TP + FN + FP + TN = 样例总数。

定义查准率(Precision)和查全率(Recall)分别为:

P = T P T P + F P P = \frac{TP}{TP+FP} P=TP+FPTP

R = T P T P + F N R = \frac{TP}{TP+FN} R=TP+FNTP

正如他们的汉语意思,

  • 查准率(Precison):所有预测值为正例的样本里,真实值为正例的样本所占的比例
  • 查全率(Recall):所有真实值为正例的样本里,预测值为正例的样本所占的比例

查准率和查全率是一对矛盾的度量,一般来说,查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。

二、PR

从上面可以看出,不同的情况下我们希望对查准率和查全率有个权衡选择,在某些情况下希望查准率更高,在另一些情况下希望查全率更高。

这里就引出了阈值的概念,对于同一个样本数据,设置不同的阈值,查准率和查全率会随之改变。因为我们的二分类器输出的是预测为正样本的概率,是一个范围在 [0, 1] 之间的数值,选择一个阈值,当预测的概率超过这个阈值时,我们就认为预测为正例。

比如在判别是否为垃圾邮件的时候,设置阈值为 0.6,在模型的输出概率大于 0.6 时,就认为预测是正例。

理解了阈值的概念,在对查准率和查全率进行权衡选择时,就可以选择不同的阈值,根据 P-R 曲线来判断。

以查准率为纵轴,查全率为横轴作图,得到的查准率-查全率曲线,就叫P-R 曲线
P-R曲线与平衡点示意图

在进行比较时,如果一个曲线被另一个曲线完全包住,则可断言后者的性能优于前者。如图所示模型 A 的性能优于模型 C;如果两个模型的 P-R 曲线发生了交叉,如图中的 A 和 B,则难以断言两者孰优孰劣,这时就需要其他方法来综合考虑查准率、查全率的性能度量。

F1 Score 就是这样一种性能度量方法,公式为:

F 1 = 2 ∗ P ∗ R P + R F1=\frac{2*P*R}{P+R} F1=P+R2PR

在实际生活中,在某些情况下我们会更加关注查准率(Precision),也就是希望查准率高一些,在另一些情况下会更加希望查全率(Recall)能够高一些。

比如,在医学模型判断癌症病人中,我们希望能够在所有真实患病的人里,尽可能多的检查出患病者,也就是希望查全率(Recall)高一点,因为无病诊断为有病去治疗总比漏掉癌症病人好;

而我是非常爱吃西瓜的人,在我每次去买西瓜的时候,我总是希望买到的瓜是甜瓜的概率大一点,即在有限的买瓜次数(所有预测值为正例的样本里),真实值为甜瓜(样本值为正例)的概率大,也就是希望查准率(Precision)高一点。

这时就需要F1 度量的一般形式 F β F_{\beta} Fβ,让我们表达出对查准率/查全率的不同偏好,定义为:

F β = ( 1 + β 2 ) × P × R ( β 2 × P ) + R F_{\beta}=\frac{\left(1+\beta^{2}\right) \times P \times R}{\left(\beta^{2} \times P\right)+R} Fβ=(β2×P)+R(1+β2)×P×R

其中, β > 0 {\beta}>0 β>0 度量了查准率对查全率的相对重要性, β = 1 {\beta}=1 β=1 时为 F1 Score, β > 1 {\beta}>1 β>1 时查准率有更大影响, β < 1 {\beta}<1 β<1 时查全率有更大影响。

注:

F1 是基于查准率和查全率的调和平均定义的:

1 F 1 = 1 2 ( 1 P + 1 R ) \frac{1}{F1}=\frac{1}{2}(\frac{1}{P}+\frac{1}{R}) F11=21(P1+R1)

F β F_{\beta} Fβ 为加权调和平均:

1 F β = 1 1 + β 2 ( 1 P + β 2 R ) \frac{1}{F_{\beta}}=\frac{1}{1+{\beta}^{2}}(\frac{1}{P}+\frac{{\beta}^{2}}{R}) Fβ1=1+β21(P1+Rβ2)

与算术平均和几何平均相比,调和平均更重视较小值。

上述 F1 值只是在二分类中,我们可以轻易扩展到多分类中。多分类中我们可以使用 OneVsRest 的策略,判断第 i 类的分类时,把不属于第 i 类的看做另一类,就能对每一类都算出一个 F1 值了。使用宏平均(macro)或者微平均(micro)来考量多分类的效果。宏平均是多个分类 F1 值相加,而微平均是多个 F1 分子分母分别相加。

macro-F1 ⁡ = 1 N ∑ i N F i micro-F1 ⁡ = 2 ∑ i N P i R i ∑ i N P i + R i \begin{aligned} \operatorname{macro-F1} &=\frac{1}{N} \sum_{i}^{N} F_{i} \\\operatorname{micro-F1} &=\frac{2 \sum_{i}^{N} P_{i} R_{i}}{\sum_{i}^{N} P_{i}+R_{i}} \end{aligned} macro-F1micro-F1=N1iNFi=iNPi+Ri2iNPiRi

三、ROC

ROC 全称是「受试者工作特征」(Receiver Operating Characteristic)曲线,纵轴是「真正例率」(True Positive Rate,简称 TPR),横轴是「假正例率」(False Positive Rate,简称 FPR),定义为:

T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP

F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP

TPR 的定义是和 Recall 是一样的。TPR 和 FPR 分别描述了在正负样本里(正样本=TP+FN,负样本=FP+TN),TP和 FP 样本所占的比例。与 PR 曲线一样,我们可以通过调整阈值,来改变 TPR 和 FPR,如图所示:

ROC曲线与AUC示意图

实际中利用有限个测试样例来绘制 ROC 曲线时,仅能获得有限个(真正例率,假正例率)坐标对,无法产生图(a)中的光滑 ROC 曲线,只能绘制出图(b)所示的近似 ROC 曲线,与 P-R 图类似,如果一个曲线被另一个曲线完全包住,则可断言后者的性能优于前者;如果两个模型的 ROC 曲线发生交叉,则难以断言两者孰优孰劣,此时需要比较 ROC 曲线下的面积,即 AUC 曲线。

四、AUC

AUC(Area Under ROC Curve)是 ROC 曲线与横轴构成的面积。

如何计算 AUC 呢?

这里给出西瓜书中的一种近似计算 AUC 的方法,即把 AUC 近似为 ROC 曲线下的每个矩形的面积之和,公式为:

A U C = 1 2 ∑ i = 1 m − 1 ( x i + 1 − x i ) ( y i + y i + 1 ) AUC=\frac{1}{2} \sum_{i=1}^{m-1}\left(x_{i+1}-x_{i}\right)\left(y_{i}+y_{i+1}\right) AUC=21i=1m1(xi+1xi)(yi+yi+1)

其他实现方法,如 Mann-Witney U statistic 这里不再叙述。

五、P-R 与 ROC 的比较

  • P-R 曲线以查准率(Precision)为纵轴,查全率(Recall)为横轴;

    ROC 曲线以真正例率(TPR)为纵轴,假正例率(FPR)为横轴;
    在这里插入图片描述

  • 随着正负样本分布的变化,ROC 曲线的形状不会发生很大的变化,而 P-R 曲线会发生很大的变化。

img

​ 如上图测试集负样本数量增加 10 倍以后 P-R 曲线发生了明显的变化,而 ROC 曲线形状基本不变。在实际环境中,正负样本的数量往往是不平衡的,所以这也解释了为什么 ROC 曲线使用更为广泛。

五、代码实现

sklearn 库中的手写数字数据集为例:

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt
# 导入数据集
digits = datasets.load_digits()
print(digits.DESCR)
X = digits.data
y = digits.target.copy()
# 构造偏斜数据,将数字9的对应索引的元素设置为1,0~8设置为0
y[digits.target == 9] = 1
y[digits.target != 9] = 0
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
# 使用逻辑回归做分类
lr = LogisticRegression()
lr.fit(X_train, y_train)
y_predict = lr.predict(X_test)
matrix = confusion_matrix(y_test, y_predict)
decision_scores = lr.decision_function(X_test)
# P-R曲线
precision, recall, thresholds1 = precision_recall_curve(y_test, decision_scores)
plt.plot(precision, recall)
plt.show()
print(thresholds1)
# ROC曲线
fprs, tprs, thresholds2 = roc_curve(y_test, decision_scores)
plt.plot(fprs, tprs)
plt.show()
# AUC
print(roc_auc_score(y_test, decision_scores))

参考资料:

本系列为参加自公众号「数据科学家联盟」的机器学习小组的系列笔记

【数据科学家学习小组】之机器学习(第一期)第二周

下面是一个使用Python实现Accuracy类、F1度量类、P-R曲线类、ROC曲线类和AUC类的示例代码: ```python import matplotlib.pyplot as plt class Accuracy: def __init__(self, y_true, y_pred): self.y_true = y_true self.y_pred = y_pred def accuracy_score(self): correct = sum([1 for yt, yp in zip(self.y_true, self.y_pred) if yt == yp]) total = len(self.y_true) accuracy = correct / total return accuracy class F1Score: def __init__(self, y_true, y_pred): self.y_true = y_true self.y_pred = y_pred def precision_recall_f1(self): true_positives = sum([1 for yt, yp in zip(self.y_true, self.y_pred) if yt == 1 and yp == 1]) false_positives = sum([1 for yt, yp in zip(self.y_true, self.y_pred) if yt == 0 and yp == 1]) false_negatives = sum([1 for yt, yp in zip(self.y_true, self.y_pred) if yt == 1 and yp == 0]) precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0 recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0 f1_score = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 return precision, recall, f1_score class PRCurve: def __init__(self, y_true, y_scores): self.y_true = y_true self.y_scores = y_scores def precision_recall_curve(self): thresholds = sorted(set(self.y_scores), reverse=True) precisions = [] recalls = [] for threshold in thresholds: y_pred = [1 if score >= threshold else 0 for score in self.y_scores] true_positives = sum([1 for yt, yp in zip(self.y_true, y_pred) if yt == 1 and yp == 1]) false_positives = sum([1 for yt, yp in zip(self.y_true, y_pred) if yt == 0 and yp == 1]) false_negatives = sum([1 for yt, yp in zip(self.y_true, y_pred) if yt == 1 and yp == 0]) precision = true_positives / (true_positives + false_positives) if (true_positives + false_positives) > 0 else 0 recall = true_positives / (true_positives + false_negatives) if (true_positives + false_negatives) > 0 else 0 precisions.append(precision) recalls.append(recall) return precisions, recalls class ROCCurve: def __init__(self, y_true, y_scores): self.y_true = y_true self.y_scores = y_scores def roc_curve(self): thresholds = sorted(set(self.y_scores), reverse=True) tpr_values = [] fpr_values = [] num_positive_cases = sum([1 for yt in self.y_true if yt == 1]) num_negative_cases = sum([1 for yt in self.y_true if yt == 0]) for threshold in thresholds: y_pred = [1 if score >= threshold else 0 for score in self.y_scores] true_positives = sum([1 for yt, yp in zip(self.y_true, y_pred) if yt == 1 and yp == 1]) false_positives = sum([1 for yt, yp in zip(self.y_true, y_pred) if yt == 0 and yp == 1]) tpr = true_positives / num_positive_cases if num_positive_cases > 0 else 0 fpr = false_positives / num_negative_cases if num_negative_cases > 0 else 0 tpr_values.append(tpr) fpr_values.append(fpr) return tpr_values, fpr_values class AUC: def __init__(self, tpr, fpr): self.tpr = tpr self.fpr = fpr def auc_score(self): auc = 0 for i in range(1, len(self.fpr)): auc += (self.fpr[i] - self.fpr[i-1]) * (self.tpr[i] + self.tpr[i-1]) / 2 return auc # 示例数据 y_true = [1, 0, 1, 1, 0, 0, 1] y_scores = [0.9, 0.6, 0.8, 0.7, 0.4, 0.3, 0.5] # 计算并输出准确率 accuracy = Accuracy(y_true, y_scores) acc = accuracy.accuracy_score() print("Accuracy:", acc) # 计算并输出精确率、召回率和F1度量 f1_score = F1Score(y_true, y_scores) precision, recall, f1 = f1_score.precision_recall_f1() print("Precision:", precision) print("Recall:", recall) print("F1 Score:", f1) # 计算并绘制P-R曲线 pr_curve = PRCurve(y_true, y_scores) precisions, recalls = pr_curve.precision_recall_curve() plt.plot(recalls, precisions) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('P-R Curve') plt.show() # 计算并绘制ROC曲线 roc_curve = ROCCurve(y_true, y_scores) tpr_values, fpr_values = roc_curve.roc_curve() plt.plot(fpr_values, tpr_values) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC Curve') plt.show() # 计算并输出AUC auc = AUC(tpr_values, fpr_values) auc_score = auc.auc_score() print("AUC Score:", auc_score) ``` 这段代码展示了如何实现Accuracy类、F1度量类、P-R曲线类、ROC曲线类和AUC类。你可以根据你的实际需求进行修改和优化。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值