基于simulink的MPC模型预测控制器仿真

本文介绍了MPC(模型预测控制)的基本原理,强调了其在过程控制中的优化和预测能力,并与PID控制器进行了对比。通过MATLAB 2022a的仿真展示了MPC的优越效果,并提供了仿真源码供读者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.算法概述

2.仿真效果

3.MATLAB仿真源码


1.算法概述

         MPC(Model Predictive Control),又称RHC, Receding Horizon Control,是一种进阶过程控制方法,自1980年以来开始在化工炼油等过程工业得到应用,并在经济领域开始得到应用。模型预测控制( MPC ) 是一种先进的过程控制方法,用于在满足一组约束条件的同时控制过程。自 1980 年代以来,它一直在化工厂和炼油厂的加工工业中使用。近年来,它还被用于电力系统平衡模型[1]和电力电子学中。[2]模型预测控制器依赖于过程的动态模型,通常是通过系统识别获得的线性经验模型. MPC 的主要优势在于它允许优化当前时隙,同时考虑未来时隙。这是通过优化有限时间范围来实现的,但仅实现当前时隙,然后再次反复优化,因此与线性二次调节器 ( LQR ) 不同。MPC 还具有预测未来事件的能力,并可以相应地采取控制措施。PID控制器不具备这种预测能力。MPC 几乎普遍作为数字控制实现,尽管有研究通过专门设计的模拟电路实现更快的响应时间。

         模型预测控制(model predictive control)顾名思义有三个主要部分构成,1模型;2预测;3控制(做决策),我们只要理解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Simuworld

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值