GAN的Loss的比较研究(4)——Wasserstein Loss理解(2)

本文深入探讨了Wasserstein Distance在生成对抗网络(GAN)中的作用,尤其是其在BEGAN(Boundary Equilibrium GAN)中的收敛性和效果。通过对比不同的计算方法,指出Wasserstein Loss在没有Lipschitz条件约束时可能导致生成器无法收敛的问题。BEGAN通过使用Auto-Encoder作为判别器,降低了分布维度并可能实现分布的重叠,从而促进生成器的收敛。此外,反馈比例控制也是BEGAN保持多样性并收敛的重要手段。
摘要由CSDN通过智能技术生成

关于Wasserstein Distance的计算,似乎还有一个简单一点的推导方法,在《BEGAN: Boundary Equilibrium Generative Adversarial Networks》中给出了一个推导的过程:
Wasserstein Distance的定义式如下:

W(r,g)=infγΠ(r,g)E(x,y)γ[xy](1) W ( P r , P g ) = inf γ ∈ Π ( P r , P g ) E ( x , y ) ∼ γ [ ‖ x − y ‖ ] ( 1 )

根据Jensen不等式有:
infE[|x1x2|]inf|E[x1x2]|=|E(x1)E(x2)|(2) inf E [ | x 1 − x 2 | ] ≥ inf | E [ x 1 − x 2 ] | = | E ( x 1 ) − E ( x 2 ) | ( 2 )

于是代入(1)有:
W(r,g)|Exr(fθ(x))Exg(fθ(x))|=|
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值