GAN的Loss的比较研究(4)——Wasserstein Loss理解(2)

本文深入探讨了Wasserstein Distance在生成对抗网络(GAN)中的作用,尤其是其在BEGAN(Boundary Equilibrium GAN)中的收敛性和效果。通过对比不同的计算方法,指出Wasserstein Loss在没有Lipschitz条件约束时可能导致生成器无法收敛的问题。BEGAN通过使用Auto-Encoder作为判别器,降低了分布维度并可能实现分布的重叠,从而促进生成器的收敛。此外,反馈比例控制也是BEGAN保持多样性并收敛的重要手段。
摘要由CSDN通过智能技术生成

关于Wasserstein Distance的计算,似乎还有一个简单一点的推导方法,在《BEGAN: Boundary Equilibrium Generative Adversarial Networks》中给出了一个推导的过程:
Wasserstein Distance的定义式如下:

W(r,g)=infγΠ(r,g)E(x,y)γ[xy](1) W ( P r , P g ) = inf γ ∈ Π ( P r , P g ) E ( x , y ) ∼ γ [ ‖ x − y ‖ ] ( 1 )

根据Jensen不等式有:
infE[|x1x2|]inf|E[x1x2]|=|E(x1)E(x2)|(2) inf E [ | x 1 − x 2 | ] ≥ inf | E [ x 1 − x 2 ] | = | E ( x 1 ) − E ( x 2 ) | ( 2 )

于是代入(1)有:
W(r,g)|Exr(fθ(x))Exg(fθ(x))|=|
目前在 GAN(Generative Adversarial Network)模型中,常用的表现好的损失函数包括以下几种: 1. WGANWasserstein GAN):WGAN 是一种改进的 GAN 模型,使用 Wasserstein 距离来度量生成样本与真实样本之间的距离,从而避免了传统 GAN 中的模式崩溃和梯度消失等问题。WGAN 的损失函数是生成器和判别器的 Wasserstein 距离之差。 2. LSGAN(Least Squares GAN):LSGAN 也是一种改进的 GAN 模型,使用均方误差来度量生成样本与真实样本之间的距离,从而能够生成更加逼真的样本。LSGAN 的损失函数是生成器和判别器的均方误差之和。 3. HINGE 损失函数:HINGE 损失函数是一种基于 SVM 的损失函数,可以让判别器更容易地区分真实样本和生成样本,从而提高训练稳定性和生成样本的质量。HINGE 损失函数的表达式是一个分段函数。 4. GAN-CLS:GAN-CLS 是一种基于分类任务的 GAN 模型,它使用分类任务的损失函数来替代传统的生成器和判别器的损失函数,从而能够生成更加多样化的样本。 5. BEGAN(Boundary Equilibrium GAN):BEGAN 是一种基于均衡理论的 GAN 模型,它通过建立生成样本与真实样本的边界来平衡生成器和判别器,从而能够生成高质量的多样化样本。 总之,好的 GAN 损失函数应该具有稳定性、逼真度高、多样性、提高多样性、均衡性等特点,能够训练出高质量的生成模型。上述的这些损失函数都能够有效地提高 GAN 模型的表现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值